Quantum-limited noise performance of a femtosecond all-fiber ytterbium laser.

Opt Express

Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany.

Published: August 2009

We report on quantum-limited noise performance of a mode-locked ytterbium all-fiber laser. The laser operates at a high normal net dispersion without dispersion compensation. We show that the naïve application of analytical models to such lasers leads to strongly underestimated timing jitter, whereas a numerical simulation is in reasonable agreement with measurements. The measured timing phase noise is found to be essentially limited by quantum noise influences and not by technical noise. Furthermore we show that the phase noise of different comb lines has a quasi-fix point at the center of the optical spectrum and that the jitter is translated into high carrier-envelope offset phase noise with a linewidth of around 3 MHz.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.015525DOI Listing

Publication Analysis

Top Keywords

phase noise
12
quantum-limited noise
8
noise performance
8
noise
6
performance femtosecond
4
femtosecond all-fiber
4
all-fiber ytterbium
4
ytterbium laser
4
laser report
4
report quantum-limited
4

Similar Publications

A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.

J Magn Reson

January 2025

Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:

Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.

View Article and Find Full Text PDF

A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.

View Article and Find Full Text PDF

The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.

View Article and Find Full Text PDF

The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.

View Article and Find Full Text PDF

This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!