The aim of the present study was to investigate the effects of resveratrol (RV), an important neuroprotective compound on NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in cerebral cortex synaptosomes of streptozotocin (STZ)-induced diabetic rats. The animals were divided into six groups (n=8): control/saline; control/RV 10mg/kg; control/RV 20mg/kg; diabetic/saline; diabetic/RV 10mg/kg; diabetic/RV 20mg/kg. After 30 days of treatment with resveratrol the animals were sacrificed and the cerebral cortex was removed for synaptosomes preparation and enzymatic assays. The results demonstrated that NTPDase and 5'-nucleotidase activities were significantly increased in the diabetic/saline group (p<0.05) compared to control/saline group. Treatment with resveratrol significantly increased NTPDase, 5'-nucleotidase activities in the diabetic/RV10 and diabetic/RV20 groups (p<0.05) compared to diabetic/saline group. When resveratrol was administered per se there was also an increase in the activities of these enzymes in the control/RV10 and control/RV20 groups (p<0.05) compared to control/saline group. AChE activity was significantly increased in the diabetic/saline group (p<0.05) compared to control/saline group. The treatment with resveratrol prevented this increase in the diabetic/RV10 and diabetic/RV20 groups. In conclusion, this study demonstrated that the resveratrol interfere with the purinergic and cholinergic neurotransmission by altering NTPDase, 5'-nucleotidase and AChE activities in cerebral cortex synaptosomes of diabetic rats. In this context, we can suggest that resveratrol should be considered potential therapeutics and scientific tools to be investigated in brain disorders associated with the diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2009.08.019DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
12
diabetic rats
8
ntpdase 5'-nucleotidase
8
ectonucleotidase acetylcholinesterase
4
acetylcholinesterase activities
4
activities synaptosomes
4
synaptosomes cerebral
4
cortex streptozotocin-induced
4
streptozotocin-induced diabetic
4
rats treated
4

Similar Publications

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.

View Article and Find Full Text PDF

This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner.

View Article and Find Full Text PDF

Objective: Regenerative therapy using stem cells to treat cerebral infarction is currently in the research phase. However, this method is costly. It also faces other significant challenges, including optimization of timing, delivery methods, and dosage.

View Article and Find Full Text PDF

Lower back pain comprises the majority of the disease burden of patients with ankylosing spondylitis (AS), while the alterations of the large-scale brain networks could be implicated in the neuropathophysiology of pain. The frontoparietal network (FPN) is known as a pain modulation hub, with key nodes dorsolateral prefrontal cortex (dlPFC) and ventrolateral prefrontal cortex (vlPFC) participating in the pain modulation and reappraisal process. In this study, we adopted the analytical approaches of independent component analysis (ICA) and seed-based correlation analysis (SCA) to examine the resting-state functional connectivity (rsFC) of the large-scale brain networks, notably FPN, between 82 AS patients and 61 healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!