Transcription factors c-Fos and NGFI-A encoded by immediate early genes largely participate in the biochemical cascade leading to genomically driven lasting adaptation by neurons to injurious exposures including hypoxia/ischemia. Present study was designed to examine the involvement of c-Fos and NGFI-A in the development of brain hypoxic tolerance induced by mild hypoxic preconditioning. Earlier we have reported that preconditioning by repetitive mild hypobaric hypoxia (MHH) considerably increases neuronal resistance to subsequent severe injurious exposures. Herein, changes of c-Fos and NGFI-A expression in vulnerable rat brain areas (hippocampus, neocortex) in response to preconditioning MHH itself were studied using quantitative immunocytochemistry. Exposure to MHH differentially enhanced c-Fos and NGFI-A expression in neocortex and hippocampal fields 3-24h following the last MHH trial. The c-Fos up-regulation was the most pronounced in neocortex, CA1, and dentate gyrus, but it was twice lower in CA3/CA4. The up-regulation of NGFI-A in CA1, dentate gyrus and neocortex was 1.5-2-fold lower than that of c-Fos; but in CA3 and CA4 the rates of the c-Fos and NGFI-A induction were comparable. The present findings indicate that cooperative but differential activation of c-Fos and NGFI-A expression in vulnerable brain areas contribute to the development of tolerance achieved by MHH preconditioning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2009.08.013DOI Listing

Publication Analysis

Top Keywords

c-fos ngfi-a
28
ngfi-a expression
12
c-fos
9
mild hypobaric
8
hypobaric hypoxia
8
transcription factors
8
factors c-fos
8
ngfi-a
8
injurious exposures
8
expression vulnerable
8

Similar Publications

Background: The immediate early gene ZENK (acronym zif268, Egr-1, NGFI-A, krox24) has been used extensively in songbird research (Mello et al., 1992; Jarvis and Nottebohm, 1997), as well as other research areas. ZENK has been used in assessing learning and memory, measuring neural activation, and identifying the cellular and molecular substrates involved in the first stages of memory formation (Watson and Clements, 1980).

View Article and Find Full Text PDF

Maternal smoking has negative long-term consequences on affective behaviors, and in rodents, chronic neonatal nicotine exposure (CNN) results in increased anxiety. In rat pups, acute nicotine stimulation activates brain regions associated with stress and anxiety, but chronic nicotine exposure could desensitize of nicotinic acetylcholine receptors, the molecular target of nicotine. Here, we determined whether CNN affected neuronal activation by an acute nicotine challenge.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) can produce a lasting polarity-specific modulation of cortical excitability in the brain, and it is increasingly used in experimental and clinical settings. Recent studies suggest that the after-effects of tDCS are related to molecular mechanisms of activity-dependent synaptic plasticity. Here we investigated the effect of DCS on the induction of one of the most studied N-methyl-d-aspartate receptor-dependent forms of long-term potentiation (LTP) of synaptic activity at CA3-CA1 synapses in the hippocampus.

View Article and Find Full Text PDF

Effects of A-CREB, a dominant negative inhibitor of CREB, on the expression of c-fos and other immediate early genes in the rat SON during hyperosmotic stimulation in vivo.

Brain Res

January 2012

Laboratory of Neurochemistry, Molecular Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

Intraperitoneal administration of hypertonic saline to the rat supraoptic nucleus (SON) increases the expression of several immediate early genes (IEG) and the vasopressin gene. These increases have usually been attributed to action of the cyclic-AMP Response Element Binding Protein (CREB). In this paper, we study the role of CREB in these events in vivo by delivering a potent dominant-negative form of CREB, known as A-CREB, to the rat SON through the use of an adeno-associated viral (AAV) vector.

View Article and Find Full Text PDF

Transcription factors c-Fos and NGFI-A encoded by immediate early genes largely participate in the biochemical cascade leading to genomically driven lasting adaptation by neurons to injurious exposures including hypoxia/ischemia. Present study was designed to examine the involvement of c-Fos and NGFI-A in the development of brain hypoxic tolerance induced by mild hypoxic preconditioning. Earlier we have reported that preconditioning by repetitive mild hypobaric hypoxia (MHH) considerably increases neuronal resistance to subsequent severe injurious exposures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!