Changes of mitochondria and relocation of the apoptosis-inducing factor during apoptosis.

Ann N Y Acad Sci

Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.

Published: August 2009

During apoptosis, apoptosis-inducing factor (AIF) is released from the mitochondrial intermembrane space to the cytosol and to the nucleus. We analyzed AIF in HeLa cells driven to apoptosis by either etoposide or actinomycin D, and we observed changes in the structure and function of mitochondria as well as the translocation of cytochrome c and AIF from mitochondria to the nucleus in early apoptosis. In cells with fragmented chromatin (i.e., in late apoptosis), the immunolabeling for AIF appeared to be distinct from chromatin, being mainly confined to mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2009.04707.xDOI Listing

Publication Analysis

Top Keywords

apoptosis-inducing factor
8
apoptosis
5
changes mitochondria
4
mitochondria relocation
4
relocation apoptosis-inducing
4
factor apoptosis
4
apoptosis apoptosis
4
apoptosis apoptosis-inducing
4
aif
4
factor aif
4

Similar Publications

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.

View Article and Find Full Text PDF

Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair.

Bioact Mater

April 2025

School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.

Complete spinal cord injury (SCI) causes permanent locomotor, sensory and neurological dysfunctions. Targeting complex immunopathological microenvironment at SCI sites comprising inflammatory cytokines infiltration, oxidative stress and massive neuronal apoptosis, the conductive oriented nanofiber felt with efficient ROS clearance, anti-inflammatory effect and accelerating neural regeneration is constructed by step-growth addition polymerization and electrostatic spinning technique for SCI repair. The formation of innovative Fe-PDA-PAT chelate in nanofiber felt enhances hydrophilic, antioxidant, antibacterial, hemostatic and binding factor capacities, thereby regulating immune microenvironment of SCI.

View Article and Find Full Text PDF

Background: Recent evidence suggests a crucial biological role for Circular RNAs (circRNAs) in keloid diseases, yet the underlying mechanisms remain unclear. This study explored the biological effects and molecular mechanisms of hsa_circ_0002198 in keloid formation.

Methods: Real-time quantitative PCR (qRT-PCR) was employed to assess the expression of circ_0002198 in keloid tissues, normal skin tissues, keloid fibroblasts (KFs), and normal skin fibroblasts (NFs) from nine patients.

View Article and Find Full Text PDF

Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.

View Article and Find Full Text PDF

Background: Chalcones have been described in the literature as promising antineoplastic compounds.

Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).

Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!