Background: The endothelial cell surface glycoprotein thrombomodulin (TM) inhibits vascular coagulation and inflammation via regulation of thrombin-mediated activation of protein C. Porphyromonas gingivalis is the major periodontopathic bacterium and has been found in vessel walls and atherosclerotic lesions in humans. P. gingivalis-derived cysteine proteases (gingipains) are known to enhance inflammatory and coagulant responses of vascular endothelial cells. However, it has not been elucidated whether gingipains affect vascular endothelial TM.
Methods: Purified arginine-specific gingipains (Rgps) and lysine-specific gingipain (Kgp) from P. gingivalis were used to investigate the effects of gingipains on recombinant human TM by immunoblot analyses. Flow cytometry and activated protein C assay were carried out to examine the effects of gingipains on vascular endothelial cell surface TM. Immunohistochemistry was performed to investigate TM expression in microvascular endothelia in gingival tissues taken from patients with periodontitis.
Results: Rgps and Kgp cleaved TM in vitro. Endothelial cell surface TM was also degraded by Rgps. Thrombin-mediated activation of protein C was reduced by Rgps through TM inactivation. Gingival microvascular endothelial TM was reduced in patients with periodontitis.
Conclusions: P. gingivalis gingipains induced the degradation and inactivation of endothelial TM, which may promote vascular coagulation and inflammation. In addition, in vivo relevance was demonstrated by reduced expression of TM in gingival microvascular endothelia in patients with periodontitis, which may be involved in the pathogenesis of periodontitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1902/jop.2009.090114 | DOI Listing |
Cell Death Differ
January 2025
Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.
Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.
View Article and Find Full Text PDFObjectives: This study explores the relationship between obesity, endothelial dysfunction, and the critical role of oxidative stress biomarkers in subclinical atherosclerosis.
Design & Methods: The study included 114 adolescents aged 12-17 years from Juiz de Fora, Brazil, divided into 40 individuals with obesity and 74 controls. Physical and biochemical assessments were conducted, including measurements of Brachial Flow-Mediated Dilation (BFMD), Carotid Intima-Media Thickness (IMT), and oxidative biomarkers such as nitrite, nitrate, and 8-isoprostane.
Introduction: In recent years, intravitreal injections (IVT) of vascular endothelial growth factor (VEGF) inhibitors have become the standard of care for several macular disorders. Frequently, the therapeutic course requires numerous injections, posing a burden on patients. Non-adherence to treatment may result in reduced visual outcomes, therefore understanding and addressing the underlying causes is imperative.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!