Nanofibers of polyaniline and oligoanilines of controlled molecular weight, e.g., tetraaniline, octaaniline, and hexadecaaniline, are synthesized using a versatile high ionic strength aqueous system that permits the use of H(2)O(2) with no added catalysts as a mild oxidizing agent. Films of oligoanilines deposited on plastic substrates show a robust and reversible chemiresistor response to NO(2) vapor at room temperature in ambient air (100-5 ppm).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja905014eDOI Listing

Publication Analysis

Top Keywords

catalyst-free synthesis
4
synthesis oligoanilines
4
oligoanilines polyaniline
4
polyaniline nanofibers
4
nanofibers h2o2
4
h2o2 nanofibers
4
nanofibers polyaniline
4
polyaniline oligoanilines
4
oligoanilines controlled
4
controlled molecular
4

Similar Publications

Carbodiimides (R-N=C=N-R) are well-known intermediates for the preparation of a variety of N-containing compounds, including heterocycles and amide linkages. Be-cause of their high reactivity and easy availability, carbodiimides have been broadly used as building blocks in the synthesis of structurally complex and diverse heterocyclic com-pounds in multi-component reactions (MCRs). Recent advances in diversity-oriented syn-thesis with carbodiimide-based MCRs are discussed in this minireview and are classified into different sections based on the key transformation involved in the reactions, such as heteroannulation and nucleophilic addition reactions which containing metal-catalyzed re-actions, multi-component reactions, and catalyst-free reactions subsections.

View Article and Find Full Text PDF

This study proposes a green and efficient atom- and step-economical method for converting hazardous CS to dithiocarbamate derivatives under visible light irradiation and catalyst-free conditions. By the construction of novel C-S and C-N bonds, a series of β-dicarbonyl compounds and amines are incorporated into the products. Under light, CS and amine first form bis(dialkylaminethiocarbonyl)disulfides, which then react with KCO-activated β-dicarbonyl compounds to form electron donor-acceptor (EDA) complexes and subsequently generate the target products.

View Article and Find Full Text PDF

Continuous flow solvent-free and catalyst-free mechanochemical production of rhodamine B dyes and their derivatives.

Chem Commun (Camb)

January 2025

Chemical Engineering & Process Development, CSIR-National Chemical Laboratory Pune, 411008, India.

In this communication, we have described a simple and efficient, catalyst free and solvent-free protocol for the continuous flow synthesis of rhodamine B dyes developed from 3-diethyl amino phenol and phthalic anhydride. Nearly 95% conversion was achieved within 12 min using a jacketed single screw reactor. This method is further used for the synthesis of six derivatives with 70-84% yield, which can be compared to 85% yield from a 1-hour long batch synthesis involving a catalyst.

View Article and Find Full Text PDF

In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.

View Article and Find Full Text PDF

Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!