In this paper, two kinds of Ni nanoparticles have been successfully synthesized without and with starch as the "green" protective material and investigated as catalysts for generating hydrogen from ammonia borane (NH(3)BH(3), AB). Experimental investigations have demonstrated that both of the Ni nanoparticles possess high catalytic activities for H(2) generation from aqueous solution of AB. However, the catalytic activities of Ni nanoparticles without starch decrease seriously in the course of the lifetime tests. In contrast, the catalytic activities of the Ni nanoparticles with starch almost keep unchanged even after 240 h. Moreover, the XPS results show that the surface of the Ni nanoparticles in starch solution is still metallic Ni even after 240 h, while that in pure water is nickel oxide. This means that starch can successfully keep the Ni nanoparticles in aqueous solution from the oxidation in air. The present efficient, low-cost, and longtime water/air stable Ni catalyst represents a promising step toward the development of AB as a viable on-board hydrogen storage and supply material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic900921mDOI Listing

Publication Analysis

Top Keywords

catalytic activities
12
nanoparticles starch
12
high catalytic
8
aqueous solution
8
activities nanoparticles
8
nanoparticles
7
starch
5
synthesis longtime
4
longtime water/air-stable
4
water/air-stable nanoparticles
4

Similar Publications

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

Alanine racemase (Alr) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent racemization between L- and D-alanine in bacteria. Owing to the potential interest in targeting Alr for antibacterial drug development, several studies have determined the structures of Alr from different species, proposing models for the reaction mechanism. Insights into its reaction dynamics may be conducive to a better understanding of the Alr reaction mechanism.

View Article and Find Full Text PDF

In recent two decades, considerable efforts have been devoted to the room-temperature green syntheses of metal-organic frameworks (MOFs) to reduce energy consumption and increase safety. It could improve some properties (e.g.

View Article and Find Full Text PDF

The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.

View Article and Find Full Text PDF

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!