Total syntheses of the highly selective antiproliferative natural products cortistatins A (1) and J (5) in their naturally occurring enantiomeric forms are described. The modular and convergent strategy employed relies on an intramolecular oxa-Michael addition/aldol/dehydration cascade reaction to cast the ABCD ring framework of the molecule and both Sonogashira and Suzuki-Miyaura coupling reactions to assemble the necessary building blocks into the required heptacyclic skeleton. A divergent approach from a late-stage epoxy ketone leads to both target molecules in a stereoselective manner. The developed synthetic technologies were applied to the construction of several analogues of the cortistatins which were biologically evaluated and compared to the natural products with regards to their antiproliferative activities against a variety of cancer cells. Analogues 8 and 81, lacking both the dimethylamino and hydroxyl groups of cortistatin A, were found to exhibit comparable biological activity as the parent compound, leading to the conclusion that such functionalities are not essential for biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja902939t | DOI Listing |
Nutr J
January 2025
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
Background: Chronic kidney disease (CKD) is prevalent among elderly patients with type 2 diabetes mellitus (T2DM). The association between dietary patterns and CKD in elderly T2DM patients remains understudied. This study aimed to investigate the relationship between dietary patterns and CKD in elderly Chinese patients with T2DM.
View Article and Find Full Text PDFBMC Genomics
January 2025
Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.
Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.
View Article and Find Full Text PDFNat Commun
January 2025
The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry, Scripps Research, La Jolla, CA, USA.
Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy.
The aim of this study is based on the searching of "new" potential environmentally friendly plant based products with herbicidal activity. The purpose of the study is also to find the source which is easy to harvest in high amount within the local environment. Salvia pratensis L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!