Passivation of (100) silicon surfaces using alkyl Grignard reagents is explored via electrochemical and thermal grafting methods. The electrochemical behavior of silicon in methyl or ethyl Grignard reagents in tetrahydrofuran is investigated using cyclic voltammetry. Surface morphology and chemistry are investigated using atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that electrochemical pathways provide an efficient and more uniform passivation method relative to thermal methods, and XPS results demonstrate that electrografted terminations are effective at limiting native oxide formation for more than 55 days in ambient conditions. A two-electron per silicon mechanism is proposed for electrografting a single (1:1) alkyl group per (100) silicon atom. The mechanism includes oxidation of two Grignard species and subsequent hydrogen abstraction and alkylation reaction resulting in a covalent attachment of alkyl groups with silicon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la9018103 | DOI Listing |
Org Lett
January 2025
School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China.
-functionalization of pillar[]arenes has been a formidable challenge, partially due to the fragility of their macrocyclic skeletons. In this concise report, we describe a facile synthetic method for monoarylation/alkylation at the position to the oxime functionality in pillar[4]arene[1]benzoquinone monoxime () via addition of Grignard reagents. The described method enables the creation of various mono--alkyl/aryl-substituted pillar[5]arene derivatives that were previously inaccessible.
View Article and Find Full Text PDFOrg Lett
January 2025
The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
A novel strategy is reported for the stereoselective synthesis of C(sp)-C(sp) -glycosides, which converts heteroaryl -glycosides into heteroaryl -glycosides with retention of configuration through a sequential process involving oxidation and Grignard reagent attack. The new method involves the generation of a S(IV) intermediate, followed by ligand coupling of the glycosyl and heteroaryl groups to yield heteroaryl -glycosides. The diverse heteroaryl -glycosides were achieved with good efficiency.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.
Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Osaka University: Osaka Daigaku, Department of Applied Chemistry, JAPAN.
Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a BH-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the BH group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!