A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tolerance and stress response of Macrolepiota procera to nickel. | LitMetric

Tolerance and stress response of Macrolepiota procera to nickel.

J Agric Food Chem

CIMO/Escola Superior Agraria, Instituto Politecnico de Braganca, Campus Santa Apolonia, Apartado 1172, 5301-855 Braganca, Portugal.

Published: August 2009

Nickel (Ni) is an essential element for many organisms; however, it is very toxic at high concentrations and also depending on the species. In macrofungi the mechanisms underlying their Ni tolerance are poorly documented. This study examines, for the first time, the participation of the antioxidative system in Macrolepiota procera exposed to different Ni2+ concentrations and their relation with Ni tolerance. The effect of the pH on Ni tolerance was also evaluated. The fungus was cultivated on solid medium with different NiCl2 concentrations (0.05, 0.2, 0.8 mM) at pH 4, 6, and 8, and fungi growth and Ni uptake were determined. The antioxidative enzymes catalase (CAT) and superoxide dismutase (SOD) and the production of hydrogen peroxide H2O2 were evaluated on fungal submerged cultures within the first hours of Ni2+ exposure. Results showed that M. procera growth decreased when Ni2+ concentrations increased, reaching a maximum growth inhibition (>80%) up to 0.2 mM of NiCl2. Ni uptake increased proportionally to Ni increase in the medium. Both Ni tolerance and Ni accumulation were affected by medium pH. Microscope observations showed differences in the size of spores produced by fungi at different Ni concentrations. Ni exposure induced oxidative stress, as indicated by the production of H2O2, the levels of which seem to be regulated by the antioxidant enzymes SOD and CAT. The time variation pattern of SOD and CAT activities indicated that the former has a greater role in alleviating the stress. The results obtained suggested that tolerance of M. procera to Ni2+ is associated with the ability of this macrofungus to initiate an efficient antioxidant defense system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf902075bDOI Listing

Publication Analysis

Top Keywords

macrolepiota procera
8
ni2+ concentrations
8
sod cat
8
tolerance
6
concentrations
5
tolerance stress
4
stress response
4
response macrolepiota
4
procera
4
procera nickel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!