Ubiquitination plays an important role in many cellular processes and is implicated in many diseases. Experimental identification of ubiquitination sites is challenging due to rapid turnover of ubiquitinated proteins and the large size of the ubiquitin modifier. We identified 141 new ubiquitination sites using a combination of liquid chromatography, mass spectrometry, and mutant yeast strains. Investigation of the sequence biases and structural preferences around known ubiquitination sites indicated that their properties were similar to those of intrinsically disordered protein regions. Using a combined set of new and previously known ubiquitination sites, we developed a random forest predictor of ubiquitination sites, UbPred. The class-balanced accuracy of UbPred reached 72%, with the area under the ROC curve at 80%. The application of UbPred showed that high confidence Rsp5 ubiquitin ligase substrates and proteins with very short half-lives were significantly enriched in the number of predicted ubiquitination sites. Proteome-wide prediction of ubiquitination sites in Saccharomyces cerevisiae indicated that highly ubiquitinated substrates were prevalent among transcription/enzyme regulators and proteins involved in cell cycle control. In the human proteome, cytoskeletal, cell cycle, regulatory, and cancer-associated proteins display higher extent of ubiquitination than proteins from other functional categories. We show that gain and loss of predicted ubiquitination sites may likely represent a molecular mechanism behind a number of disease-associatedmutations. UbPred is available at http://www.ubpred.org.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006176PMC
http://dx.doi.org/10.1002/prot.22555DOI Listing

Publication Analysis

Top Keywords

ubiquitination sites
36
ubiquitination
11
sites
9
predicted ubiquitination
8
cell cycle
8
proteins
5
identification analysis
4
analysis prediction
4
prediction protein
4
protein ubiquitination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!