Recent studies indicate a role of chymase in the regulation of angiotensin II (AngII) formation in cardiovascular and renal tissues. We investigated a possible contribution of chymase to AngII formation and to renal fibrosis in unilateral ureteral obstruction (UUO). Eight-week-old Syrian hamsters were subjected to UUO and treated with vehicle, the specific chymase inhibitor (CI) 4-[1-(4-methyl-benzo[b]thiophen-3-ylmethyl)-1H-benzimidazol-2-ylsulfanyl]-butyric acid (50 mg/kg, twice a day, p.o.), or the selective AT(1)-receptor blocker olmesartan (10 mg/kg per day, p.o.) for 14 days. UUO-induced renal interstitial fibrosis was associated with increases in renal mRNA levels of alpha-smooth muscle actin (SMA), type I collagen, and transforming growth factor (TGF)-beta. The UUO hamsters showed markedly higher AngII contents and increased AT(1)-receptor mRNA level in the obstructed kidney than sham-operated ones. In contrast, angiotensin-converting enzyme (ACE) protein expression was significantly lower in UUO hamsters. In UUO hamsters, treatment with CI or olmesartan significantly decreased AngII levels in renal tissue and mRNA levels of alpha-SMA, type I collagen, and TGF-beta and ameliorated tubulointerstitial injury. On the other hand, neither CI nor olmesartan changed systolic blood pressure, renal ACE, and AT(1)-receptor protein levels. These data suggest that chymase-dependent intrarenal AngII formation contributes to the pathogenesis of interstitial fibrosis in obstructed kidneys of hamsters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754182PMC
http://dx.doi.org/10.1254/jphs.09152fpDOI Listing

Publication Analysis

Top Keywords

angii formation
12
uuo hamsters
12
fibrosis obstructed
8
obstructed kidneys
8
kidneys hamsters
8
mg/kg day
8
interstitial fibrosis
8
mrna levels
8
type collagen
8
hamsters
6

Similar Publications

Atrial Fibrillation (AF) induces proinflammatory processes which incite vascular endothelial activation and dysfunction. This study seeks to examine the potential relationship between various endothelial, inflammatory, thrombotic, and renin-angiotensin-system (RAS) biomarkers in AF patients.Blood samples were from AF patients (n = 110) prospectively enrolled in this study prior to their first AF ablation.

View Article and Find Full Text PDF

Aortic dissection (AD) is a life-threatening aortopathy with no specific pharmacological therapy. Ubiquitination, a highly orchestrated enzymatic cascade involving sequential E1-E2-E3 interactions, is suggested to contribute to the disease pathogenesis. However, the specific role of E1 enzymes in AD progression remains unknown.

View Article and Find Full Text PDF

Aims: Activation of Protease Activated Receptor 2 (PAR2) has been shown to be involved in regulation of injury-related processes including inflammation, fibrosis and hypertrophy. In this study we will investigate the role of PAR2 in cardiac injury in a mouse model of hypertension using continuous infusion with angiotensin II.

Methods: Hypertension was induced in 12 weeks old wildtype (wt, n = 8) and PAR2 deficient mice (n = 9) by continuous infusion with angiotensin II for 4 weeks using osmotic minipumps.

View Article and Find Full Text PDF

Transcription Factor 21 Regulates Cardiac Myofibroblast Formation and Fibrosis.

Circ Res

January 2025

Division of Molecular Cardiovascular Biology (A.K.Z.J., R.K.K., R.J.V., S.-C.J.L., S.L.K.B., Y.K., K.M.G., K.W., M.A.S., T.A.B., J.D.M.), Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, OH.

Background: TCF21 (transcription factor 21) is a bHLH (basic helix-loop-helix) protein required for the developmental specification of cardiac fibroblasts (CFs) from epicardial progenitor cells that surround the embryonic heart. In the adult heart, TCF21 is expressed in tissue-resident fibroblasts and is downregulated in response to injury or stimuli leading to myofibroblast differentiation. These findings led to the hypothesis that TCF21 regulates fibroblast differentiation in the adult mammalian heart to affect fibrosis.

View Article and Find Full Text PDF

Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in the nephrotoxicity which is caused by the long-term use of the immunosuppressive drug cyclosporine (CsA). This study investigates whether chenodeoxycholic acid (CDCA), an endogenous farnesoid X receptor (FXR) agonist with antioxidant and anti-inflammatory effects, modulates CsA nephrotoxicity. CsA (25 mg/kg/day; s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!