PII in higher plants: a modern role for an ancient protein.

Trends Plant Sci

Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N1N4.

Published: September 2009

AI Article Synopsis

Article Abstract

PII in prokaryotic organisms is a crucial integrator of cellular carbon, nitrogen and energy levels. In higher plants, however, its role remains significantly less clear. Previous findings suggest that PII-N-acetylglutamate kinase (NAGK) complex formation controls l-arginine biosynthesis, whereas other work implicates PII in regulating chloroplastic NO2(-) uptake. Together, these findings indicate that PII has evolved from a central metabolic role in prokaryotes towards a more specialized role in eukaryotes. Furthermore, recent genomic and bioinformatic findings reveal tissue-specific expression of PII in higher plants, with transcriptional expression patterns suggestive of a link between PII and storage protein production during seed development. This review focuses on the unique structural, biochemical and biological aspects of PII in higher plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2009.07.003DOI Listing

Publication Analysis

Top Keywords

higher plants
16
pii higher
12
pii
7
plants
4
plants modern
4
role
4
modern role
4
role ancient
4
ancient protein
4
protein pii
4

Similar Publications

Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

A Survey of Wild Indigenous Orchid Populations in Western Australia Reveals Spillover of Exotic Viruses.

Viruses

January 2025

School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.

is a terrestrial orchid endemic to southwestern Australia. The virus status of has not been studied. Eighty-three samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them.

View Article and Find Full Text PDF

RNA Virus Discovery Sheds Light on the Virome of a Major Vineyard Pest, the European Grapevine Moth ().

Viruses

January 2025

Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.

The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.

View Article and Find Full Text PDF

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!