Introduction: The purpose of this study was to evaluate the microtensile bond strength of a total etch (XP-Bond) and a self-etch (Clearfil SE Bond) adhesive system to dentine surfaces treated using endodontic irrigants.

Methods: Twenty-four freshly extracted third molars were used. After creating a smear layer on the coronal midthird portion of the crowns, the teeth were divided into three groups and surfaces were irrigated with distilled water, 5.25% NaOCl + 17% EDTA, and 1.3% NaOCl + BioPure MTAD, respectively. Each group was divided into two subgroups, and a self-etching adhesive and an etch-and-rinse adhesive were applied respectively. The teeth were restored with a composite material and sectioned to produce sticks for microtensile bond testing.

Results: The microtensile bond strength of the MTAD + Clearfil SE group was found to be significantly lower than the microtensile bond strength of the distilled water + Clearfil SE Bond group and the NaOCl, EDTA, + Clearfil SE Bond group (p = 0.0001, p = 0.009).

Conclusions: Because of the significant reduction of Clearfil SE Bond to coronal dentine after MTAD application, an etch-and rinse adhesive such as XP-Bond may be preferred if this irrigant has been chosen during endodontic treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2009.05.002DOI Listing

Publication Analysis

Top Keywords

microtensile bond
20
bond strength
16
clearfil bond
16
bond
9
distilled water
8
bond group
8
microtensile
5
clearfil
5
endodontic irrigants
4
irrigants microtensile
4

Similar Publications

This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.

View Article and Find Full Text PDF

A Novel Dual Cross-linking Reagent for Dentin Bonding Interface Stability.

J Dent Res

December 2024

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.

The cross-linking reagent has been proposed as a means of modifying dentin collagen, inhibiting matrix metalloproteinase activities, and enhancing bond durability during dentin bonding procedures. This study aimed to synthesize an operation-friendly dual cross-linking reagent-3-(4-formyphenoxy)-2-hydroxypropyl methacrylate (FPA)-to assess its ability to cross-link dentin collagen and reduce enzymatic activity at the bonding interface. Cytotoxicity was evaluated by a cell counting kit-8 test and calcein AM/propidium iodide assay.

View Article and Find Full Text PDF

Objective: The purpose of this study was to examine the effect of several antiseptic mouthwashes on the dentin microtensile bond strength of self-etch adhesive, considering the influence of rinsing with water.

Methods: Forty flat dentin surfaces were produced by sectioning sound extracted third molars. They were randomly divided into four main groups: (1) artificial saliva (control); (2) 1 % hydrogen peroxide; (3) 0.

View Article and Find Full Text PDF

This study investigated the effects of nonthermal atmospheric pressure plasma (NAPP) application and dentin rehydration with water (REHY) on bond strength (BS) of adhesives. Three etch-and-rinse adhesives were tested: Scotchbond Multi-Purpose (SBM / water-based primer + adhesive resin), Gluma Bond Universal (GBU / single-bottle containing acetone as organic solvent) and Prime&Bond Universal (PBU / single-bottle containing propanol as organic solvent). Adhesives were applied: 1- to phosphoric acid-etched dentin (Control), 2- after NAPP application for 45 seconds to etched dentin or 3- after REHY with water (10 seconds) of plasma-treated etched dentin.

View Article and Find Full Text PDF

Bonding Performance of a New Resin Core System with a Low-Polymerization-Shrinkage Monomer to Root Canal Dentin.

Polymers (Basel)

November 2024

Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan.

Resin core build-ups following root canal treatment still have many issues. This study evaluated whether a new low-polymerization-shrinkage resin core system (LC2) could address these issues by assessing its bonding performance to root canal dentin using microtensile bond strength tests and gap formation using swept-source optical coherence tomography (SS-OCT). Twenty-four extracted human lower premolars were used for bonding performance tests, while forty-eight sound extracted human wisdom teeth were used for gap observation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!