Biological soil thin-sections and a combination of image analysis and geostatistical tools were used to conduct a detailed investigation into the distribution of bacteria in soil and their relationship with pores. The presence of spatial patterns in the distribution of bacteria was demonstrated at the microscale, with ranges of spatial autocorrelation of 1 mm and below. Bacterial density gradients were found within bacterial patches in topsoil samples and also in one subsoil sample. Bacterial density patches displayed a mosaic of high and low values in the remaining subsoil samples. Anisotropy was detected in the spatial structure of pores, but was not detected in relation to the distribution of bacteria. No marked trend as a function of distance to the nearest pore was observed in bacterial density values in the topsoil, but in the subsoil bacterial density was greatest close to pores and decreased thereafter. Bacterial aggregation was greatest in the cropped topsoil, though no consistent trends were found in the degree of bacterial aggregation as a function of distance to the nearest pore. The implications of the results presented for modelling and predicting bacterial activity in soil are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0168-6496(03)00027-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!