In adult cardiomyocytes (CMs), the Na(+)/Ca(2+) exchanger (NCX) is a well-defined determinant of Ca(2+) homeostasis. Developmentally, global NCX knockout in mice leads to abnormal myofibrillar organization, electrical defects, and early embryonic death. Little is known about the expression and function of NCX in human heart development. Self-renewable, pluripotent human embryonic stem cells (hESCs) can serve as an excellent experimental model. However, hESC-derived CMs are highly heterogeneous. A stably lentivirus-transduced hESC line (MLC2v-dsRed) was generated to express dsRed under the transcriptional control of the ventricular-restricted myosin light chain-2v (MLC2v) promoter. Electrophysiologically, dsRed+ cells differentiated from MLC2vdsRed hESCs displayed ventricular action potentials (AP), exclusively. Neither atrial nor pacemaker APs were observed. While I(Ca-L), I(f), and I(Kr) were robustly expressed, I(Ks) and I(K1) were absent in dsRed+ ventricular hESCCMs. Upon differentiation (7+40 to +90 days), the basal [Ca(2+)](i), Ca(2+) transient amplitude, maximum upstroke, and decay velocities significantly increased (P < 0.05). The I(Ca-L) antagonizer nifedipine (1 microM) decreased the Ca(2+) transient amplitude (to approximately 30%) and slowed the kinetics (by approximately 2-fold), but Ca(2+) transients could still be elicited even after complete ICa-L blockade, suggesting the presence of additional Ca(2+) influx(es). Indeed, Ni(2+)-sensitive INCX could be recorded in 7+40- and +90-day dsRed+ hESC-CMs, and its densities increased from -1.2 +/- 0.6 pA/pF at -120 mV and 3.6 +/- 1.0 pA/pF at 60 mV by 6- and 2-folds, respectively. With higher [Ca(2+)](i), 7+90-day ventricular hESC-CMs spontaneously but irregularly fired transients upon a single stimulus under an external Na(+)-free condition; however, without extracellular Na(+), nifedipine could completely inhibit Ca(2+) transients. We conclude that I(NCX) is functionally expressed in developing ventricular hESC-CMs and contributes to their excitation-contraction coupling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135244PMC
http://dx.doi.org/10.1089/scd.2009.0184DOI Listing

Publication Analysis

Top Keywords

na+/ca2+ exchanger
8
excitation-contraction coupling
8
human embryonic
8
embryonic stem
8
ca2+ transient
8
transient amplitude
8
ca2+ transients
8
+/- pa/pf
8
ventricular hesc-cms
8
ca2+
6

Similar Publications

The inhibition of SLC8A1 promotes Ca-dependent cell death in Gastric Cancer.

Biomed Pharmacother

December 2024

Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.

Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.

View Article and Find Full Text PDF

Reversible and irreversible retention of heavy metals in saturated porous media: association with kaolin.

Environ Sci Process Impacts

December 2024

Anhui Bossco Environmental Protection Technology Co., Ltd, Ningguo, Anhui, 242301, China.

Contamination of heavy metals (HMs) has caused increasing concern due to their ecological toxicities and difficulties in degradation. The transport, retention, and release of HMs in porous media are highly related to their environmental fate and risk to groundwater. Column transport experiments and numerical simulations were conducted to investigate the retention and release behaviors of Cu, Pb, Cd, and Zn in the presence and absence of kaolin under varying ionic strengths and cation types.

View Article and Find Full Text PDF

Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!