The influence of sodium dodecyl sulfate (SDS) on waveform distortion of 141 kHz ultrasonic standing waves in liquids containing air bubbles was investigated for various transducer powers. Fast Fourier transform (FFT) operations were performed on the pressure waveform to obtain the harmonic components. In addition, the intensity of sonoluminescence (SL) was measured as a function of the power. Waveform distortion was observed for water at high applied power, with the curve exhibiting a steeper gradient for positive pressures and a broadened minimum for negative pressures. This was in reasonable agreement with theoretical studies reported in the literature. Much less distortion was found for a 1 mM SDS solution as the applied power was increased than for water or a 10 mM SDS solution. This may be attributed to a lower population of large coalesced bubbles in the 1 mM solution due to electrostatic repulsion, leading to damping of the sound energy and little cavitation noise because of viscous resistance to bubble radial motion in addition to adsorption and desorption of surfactant molecules at the bubble-liquid interface. For 10 mM SDS, the power threshold for the harmonic components was lower than that for the SL. In this case, it appears that there is a range of applied powers where most bubbles are stable and cannot collapse. The influence of the addition of an electrolyte and a nonionic surfactant was also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp901898p | DOI Listing |
bioRxiv
November 2024
Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY.
J Neural Eng
December 2024
Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia.
This study investigated software methods for removing stimulation artefacts in recordings undertaken during deep brain stimulation (DBS). We aimed to evaluate artefact attenuation using sample recordings of evoked resonant neural activity (ERNA), as well as a synthetic ground-truth waveform that emulated observed ERNA characteristics.The synthetic waveform and eight raw DBS recordings were processed by fourteen algorithms spanning the following categories: signal modification, signal decomposition, and template subtraction.
View Article and Find Full Text PDFNMR Biomed
January 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.
View Article and Find Full Text PDFAmplification of bursts of ultrashort pulses is very challenging when the intraburst repetition frequency reaches the THz range, corresponding to (sub)-ps intervals between consecutive pulses. Periodic interference significantly modifies conditions for chirped pulse amplification (CPA), leading to temporal and spectral distortions during CPA due to optical Kerr nonlinearity. Multi-pulse chirped amplification to mJ energies may lead to a pronounced degradation of burst fidelity and the appearance of periodic temporal satellites after de-chirping the amplified waveform.
View Article and Find Full Text PDFThe linear frequency swept light source is a critical device for several sensing applications, including FMCW LiDAR, with which the maximum sensing distance is determined by the coherence length of the light source and the spatial resolution is limited by the frequency scan nonlinearity. Here, we report what we believe to be a novel approach to generate highly coherent optical linear frequency sweeps (LFS) with a Fourier domain mode-locked (FDML) opto-electronic oscillator (OEO) deploying carrier suppressed single sideband (CS-SSB) modulation enabled by a dual-parallel Mach-Zehnder modulator (DP-MZM), with the coherence length determined by the fixed frequency laser used in the OEO, without the need of an expensive high-speed arbitrary waveform generator (AWG). Concurrently, a radio frequency (RF) LFS synchronized with the optical LFS is also generated with the FDML OEO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!