Nitroalkene fatty acids are potent endogenous ligand activators of PPARgamma-dependent transcription. Previous studies with the naturally occurring regioisomers of nitrolinoleic acid revealed that the isomers are not equivalent with respect to PPARgamma activation. To gain further insight into the structure-activity relationships between nitroalkenes and PPARgamma, we examined additional naturally occurring nitroalkenes derived from oleic acid, 9-nitrooleic acid (E-9-NO2-18:1 [1]) and 10-nitrooleic acid (E-10-NO2-18:1 [2]), and several synthetic nitrated enoic fatty acids of variable carbon chain length, double bonds, and nitration site. At submicromolar concentrations, E-12-NO2 derivatives were considerably more potent than isomers nitrated at carbons 5, 6, 9, 10, and 13, and chain length (16 versus 18) or number of double bonds (1 versus 2) was of little consequence for PPARgamma activation. Interestingly, at higher concentrations (>2 microM) the nitrated enoic fatty acids (E-9-NO2-18:1 [1], E-9-NO2-16:1 [3], E-10-NO2-18:1 [2], and E-12-NO2-18:1 [7]) deviated significantly from the saturable pattern of PPARgamma activation observed for nitrated 1,4-dienoic fatty acids (E-9-NO2-18:2, E-10-NO2-18:2, E-12-NO2-18:2, and E-13-NO2-18:2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741172PMC
http://dx.doi.org/10.1021/jm900326cDOI Listing

Publication Analysis

Top Keywords

fatty acids
20
ppargamma activation
12
nitroalkene fatty
8
naturally occurring
8
e-9-no2-181 [1]
8
e-10-no2-181 [2]
8
nitrated enoic
8
enoic fatty
8
chain length
8
double bonds
8

Similar Publications

In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA.

Background: Brain accumulation of amyloid-ß (Aß) in plaques and neurons is the cause of AD neuropathology that is opposed by autologous monocyte/macrophages (MMs) in health but this defense fails in AD.

Method: RNAseq, immunochemistry of the brain, immunofluorescence, and confocal microscopy of macrophages.

Result: In the AD brain, MMs shuttle Aß from parenchyma to vessels, which develop vasculitis, causing amyloid-related imaging abnormalities (ARIAs).

View Article and Find Full Text PDF

Background: Emerging studies have identified changes in lipid processing in Alzheimer's disease patients. However, how the various brain cell types respond to these changes is unclear. Multiple Alzheimer's disease risk genes are expressed in microglia and involved in lipid sensing and processing.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) risk and progression are significantly influenced by ApoE genotypes, with ApoE4 increasing and ApoE2 decreasing the susceptibility compared to ApoE3. Understanding metabolic pathways affected by ApoE genotypes will help decipher disease development and identify new therapeutic targets.

Method: This study investigates the impact of ApoE genotypes on aging brain metabolic trajectories using human ApoE-targeted replacement mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!