Assured dispersibility is a prerequisite for clinical application of nanomaterials. Carbon nanomaterials have hydrophobic surfaces and thus readily agglomerate under aqueous conditions. Various conjugates composed of a carbon surface-binding moiety and polyethylene glycol (PEG) have been examined as dispersants for carbon nanomaterials. Here we synthesized a conjugate composed of a comb-shaped PEG (cPEG) and carbon nanomaterial-binding peptide (NHBP-1). The resultant cPEG-NHBP3 conjugate displayed multiple units (2.4 on average) of NHBP-1 on a single cPEG molecule whose average molecular weight was 15-20 kDa. cPEG-NHBP3 endowed single-walled carbon nanohorns (SWNHs) with good dispersibility in vitro, which could not be achieved with 20PEG-NHBP, a conjugate composed of linear 20 kDa PEG and a single NHBP-1 peptide. Notably, cPEG-NHBP1, which was similar to 20PEG-NHBP but had a comb-shaped PEG backbone, functioned better as a dispersant than 20PEG-NHBP, suggesting a graft-type PEG formula is better-suited for dispersing nanomaterials. Finally, cPEG-NHBP3 treatment substantially suppressed formation of SWNH agglomerates in mouse lung, suggesting the potential utility of SWNHs as a carrier in drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp800141v | DOI Listing |
Nano Lett
December 2024
Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland.
RNA-lipid interactions directly influence RNA activity, which plays a crucial role in the development of new applications in medicine and biotechnology. However, while specific preferential behaviors between RNA and lipid bilayers have been identified experimentally, their molecular origin remains unexplored. Here we use molecular dynamics simulations to investigate the interaction between RNA and membranes composed of zwitterionic lipids at the atomistic level.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
The pathogen-associated -glucosyltransferase IroB is involved in the biosynthesis of salmochelins, -glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including and . Here, we reassess the ability of IroB to -glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB.
View Article and Find Full Text PDFChem Biodivers
December 2024
Kitasato University: Kitasato Daigaku, Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, 5-9-1 Shirokane, 1088641, Minato-ku, JAPAN.
The discovery of novel natural products through the exploration of distinct microorganisms is crucial for advancing drug discovery research. In this study, we focus on a unique environmental resource, microbial masses known as "Tengu-no-Mugimeshi." From the culture broth of Lecanicillium aphanocladii FKI-9593, isolated from Tengu-no-Mugimeshi collected at Mount Kurohime, Nagano Prefecture, Japan, we report the isolation of two novel tetrapeptides, tengupeptins A (1) and B (2), as well as the known compound oosporein.
View Article and Find Full Text PDFMol Neurodegener
December 2024
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
Background: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!