A quantitative understanding of the process of retrovirus-mediated gene transfer into mammalian cells should assist the design and optimization of transduction protocols. We present a mathematical model of the process that incorporates the essential rate-limiting transduction steps including diffusion, convection and decay of viral vectors, their binding at the cell surface and entry into the cell cytoplasm, reverse transcription of uncoated RNA to form DNA intermediates, transport of the latter through the cytosol to the cell nucleus and, finally, nuclear import and integration of the delivered DNA into the target cell genome. Cell and virus population balances are used to account for the kinetics of multiple vector infections which influence the transduction efficiency and govern the integrated copy number. The mathematical model is validated using gibbon ape leukemia virus envelope pseudotyped retroviral vectors and K562 target cells. Viral intermediate complexes derived from the internalized retroviral vectors are found to remain stable inside the K562 cells and the cytoplasmic trafficking time is consistent with the time scale for retrovirus uncoating, reverse transcription and transport to the cell nucleus. The model predictions of transduction efficiency and integrated copy number agree well with experimental data for both static (i.e., standard gravity) and centrifugation-based gene transfer protocols. The formulation of the model can also be applied to transduction protocols involving lenti- or foamy-viruses and so should prove to be useful for the optimization of several types of gene transfer processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.22515 | DOI Listing |
Biol Reprod
January 2025
Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.
View Article and Find Full Text PDFISME J
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.
View Article and Find Full Text PDFPLoS Genet
January 2025
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia.
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Developmental Biology, Department of Morphology and Genetics-Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil.
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.
View Article and Find Full Text PDFSyst Parasitol
January 2025
Pacific branch of the Federal State Budget Scientific Institution "Russian Federal Research Institute of Fisheries and Oceanography", 4 Alley Shevchenko, Vladivostok, Russian Federation, 690091.
Opistholecithum sandugaense n. g. n.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!