Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis.

J Bacteriol

Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kluyver Centre for the Genomics of Industrial Fermentations and the Zernike Institute of Advanced Materials, University of Groningen, 9751 NN Haren, The Netherlands.

Published: November 2009

In all domains of life Oxa1p-like proteins are involved in membrane protein biogenesis. Bacillus subtilis, a model organism for gram-positive bacteria, contains two Oxa1p homologs: SpoIIIJ and YqjG. These molecules appear to be mutually exchangeable, although SpoIIIJ is specifically required for spore formation. SpoIIIJ and YqjG have been implicated in a posttranslocational stage of protein secretion. Here we show that the expression of either spoIIIJ or yqjG functionally compensates for the defects in membrane insertion due to YidC depletion in Escherichia coli. Both SpoIIIJ and YqjG complement the function of YidC in SecYEG-dependent and -independent membrane insertion of subunits of the cytochrome o oxidase and F(1)F(o) ATP synthase complexes. Furthermore, SpoIIIJ and YqjG facilitate membrane insertion of F(1)F(o) ATP synthase subunit c from both E. coli and B. subtilis into inner membrane vesicles of E. coli. When isolated from B. subtilis cells, SpoIIIJ and YqjG were found to be associated with the entire F(1)F(o) ATP synthase complex, suggesting that they have a role late in the membrane assembly process. These data demonstrate that the Bacillus Oxa1p homologs have a role in membrane protein biogenesis rather than in protein secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795313PMC
http://dx.doi.org/10.1128/JB.00853-09DOI Listing

Publication Analysis

Top Keywords

spoiiij yqjg
28
membrane protein
12
protein biogenesis
12
membrane insertion
12
f1fo atp
12
atp synthase
12
bacillus subtilis
8
spoiiij
8
membrane
8
oxa1p homologs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!