Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress.

J Exp Bot

Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (IIB-INTECH/CONICET-UNSAM), Camino de Circunvalación Laguna, Chascomús, Argentina.

Published: January 2010

The possible involvement of apoplastic reactive oxygen species produced by the oxidation of free polyamines in the leaf growth of salinized maize has been studied here. Salt treatment increased the apoplastic spermine and spermidine levels, mainly in the leaf blade elongation zone. The total activity of polyamine oxidase was up to 20-fold higher than that of the copper-containing amine oxidase. Measurements of H(2)O(2), *O(2)(-), and HO* production in the presence or absence of the polyamine oxidase inhibitors 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane suggest that, in salinized plants, the oxidation of free apoplastic polyamines by polyamine oxidase by would be the main source of reactive oxygen species in the elongation zone of maize leaf blades. This effect is probably due to increased substrate availability. Incubation with 200 microM spermine doubled segment elongation, whereas the addition of 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane to 200 microM spermine attenuated and reversed the last effect, respectively. Similarly, the addition of MnCl(2) (an *O(2)(-) dismutating agent) or the HO* scavenger sodium benzoate along with spermine, annulled the elongating effect of the polyamine on the salinized segments. As a whole, the results obtained here demonstrated that, under salinity, polyamine oxidase activity provides a significant production of reactive oxygen species in the apoplast which contributes to 25-30% of the maize leaf blade elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erp256DOI Listing

Publication Analysis

Top Keywords

polyamine oxidase
20
maize leaf
12
reactive oxygen
12
oxygen species
12
oxidase activity
8
oxidation free
8
leaf blade
8
blade elongation
8
elongation zone
8
119-bis-ethylamine-51015 triazanonadecane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!