Here we report the in vitro selection of an unusual ribozyme that efficiently performs nucleotide synthesis even though it was selected to perform a distinctly different sugar chemistry. This ribozyme, called pR1, when derivatized with ribose 5-phosphate (PR) at its 3' terminus and incubated with 6-thioguanine, produces two interconverting thiol-containing products corresponding to a Schiff base and its Amadori rearranged product. Consistent with this hypothesis, removing the 2-hydroxyl from the PR substrate results in only a single product. Surprisingly, as this was not selected for, switching the tethered PR substrate to 5-phosphoribosyl 1-pyrophosphate results in the synthesis of 6-thioguanosine 5'-monophosphate. The discovery that a ribozyme can promote such distinct reactions spontaneously demonstrates that an RNA-mediated metabolism early in evolution could have evolved important new functionalities via ribozyme promiscuity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2009.07.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!