Mitochondrial biogenesis is critical for the normal function of cells. It is well known that mitochondria are produced and eventually after normal functioning they are degraded. Thus, the actual level of mitochondria in cells is dependent both on the synthesis and the degradation. Ever since the proposal of the mitochondrial theory of ageing by Jaime Miquel in the 70's, it was appreciated that mitochondria, which are both a target and a source of radicals in cells, are most important organelles to understand ageing. Thus, a common feature between cell physiology of ageing and exercise is that in both situations mitochondria are critical for normal cell functioning. Mitochondrial synthesis is stimulated by the PGC-1alpha-NRF1-TFAM pathway. PGC-1alpha is the first stimulator of mitochondrial biogenesis. NRF1 is an intermediate transcription factor which stimulates the synthesis of TFAM which is a final effector activating the duplication of mitochondrial DNA molecules. This pathway is impaired in ageing. On the contrary, exercise, particularly aerobic exercise, activates mitochondriogenesis in the young animal but its effects on mitochondrial biogenesis in the old animal are doubtful. In this chapter we consider the interrelationship between mitochondrial biogenesis stimulated by exercise and the possible impairment of this pathway in ageing leading to mitochondrial deficiency and eventually muscle sarcopenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.addr.2009.06.006 | DOI Listing |
J Gastroenterol Hepatol
January 2025
Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.
Background: Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD.
View Article and Find Full Text PDFKidney Res Clin Pract
January 2025
Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, UK.
Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!