Background: Dietary fiber reduces the intestinal absorption of nutrients and the blood concentrations of cholesterol and triglycerides.

Aim: We wished to test the hypothesis that high-viscosity (HV) and low-viscosity preparations of barley and oat beta-glucan modify the expression of selected genes of lipid-binding proteins in the intestinal mucosa and reduce the intestinal in vitro uptake of lipids.

Methods: Five different beta-glucan extracts were separately added to test solutions at concentrations of 0.1-0.5% (wt/wt), and the in vitro intestinal uptake of lipids into the intestine of rats was assessed. An intestinal cell line was used to determine the effect of beta-glucan extracts on the expression of intestinal genes involved in lipid metabolism and fatty acid transport.

Results: All extracts reduced the uptake of 18:2 when the effective resistance of the unstirred water layer was high. When the unstirred layer resistance was low, the HV oat beta-glucan extract reduced jejunal 18:2 uptake, while most extracts reduced ileal 18:2 uptake. Ileal 18:0 uptake was reduced by the HV barley extract, while both jejunal and ileal cholesterol uptakes were reduced by the medium-purity HV barley extract. The inhibitory effect of HV barley beta-glucan on 18:0 and 18:2 uptake was more pronounced at higher fatty acid concentrations. The expression of genes involved in fatty acid synthesis and cholesterol metabolism was down-regulated with the HV beta-glucan extracts. beta-Glucan extracts also reduced intestinal fatty-acid-binding protein and fatty acid transport protein 4 mRNA.

Conclusions: The reduced intestinal fatty acid uptake observed with beta-glucan is associated with inhibition of genes regulating intestinal uptake and synthesis of lipids. The inhibitory effect of beta-glucan on intestinal lipid uptake raises the possibility of their selective use to reduce their intestinal absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833848PMC
http://dx.doi.org/10.1016/j.jnutbio.2009.04.003DOI Listing

Publication Analysis

Top Keywords

beta-glucan extracts
20
fatty acid
20
intestinal
12
intestinal uptake
12
genes involved
12
extracts reduced
12
182 uptake
12
uptake
11
beta-glucan
10
vitro intestinal
8

Similar Publications

Genetic variation for malting quality as well as metabolomic and near-infrared features was identified. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy of predicted breeding values. Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectroscopy technologies for enhancing genetic evaluation in breeding programs.

View Article and Find Full Text PDF

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

Release of Biopolymers from Biomass Through Thermal and Non-Thermal Technologies.

Microorganisms

December 2024

Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.

Components of yeast cell walls, such as β-glucans and mannoproteins, show promise for developing sustainable biopolymers for food packaging. Efficient extraction, however, is challenging due to the complexity of the yeast cell wall. This study explored high-pressure homogenisation (HPH) and pulsed electric fields (PEFs), alone and with heat treatment (TT), on bakery yeast (BY) and brewery spent yeast (BSY) biomasses.

View Article and Find Full Text PDF

Oats ( L.) are an important cereal crop with diverse applications in both food and forage. Oat β-glucan has gained attention for its beneficial biological activities, such as reducing cardiovascular risk, preventing diabetes, and enhancing intestinal health.

View Article and Find Full Text PDF

Wine lees, the second most significant by-product of winemaking after grape pomace, have received relatively little attention regarding their potential for valorization. Despite their rich content in bioactive components such as β-glucans, industrial utilization faces challenges, particularly due to variability in their composition. This inconsistency impacts the reliability and standardization of final products, limiting broader adoption in industrial applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!