A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of paraquat-induced oxidative stress on the neuronal plasma membrane Ca(2+)-ATPase. | LitMetric

Effects of paraquat-induced oxidative stress on the neuronal plasma membrane Ca(2+)-ATPase.

Free Radic Biol Med

Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA.

Published: November 2009

Oxidative stress leads to the disruption of calcium homeostasis in brain neurons; however, the direct effects of oxidants on proteins that regulate intracellular calcium ([Ca(2+)](i)) are not known. The calmodulin (CaM)-stimulated plasma membrane Ca(2+)-ATPase (PMCA) plays a critical role in regulating [Ca(2+)](i). Our previous in vitro studies showed that PMCA present in brain synaptic membranes is readily inactivated by a variety of reactive oxygen species (ROS). The present studies were conducted to determine the vulnerability of PMCA to ROS generated in neurons as would probably occur in vivo. Primary cortical neurons were exposed to paraquat (PQ), a redox cycling agent that generates intracellular ROS. Low concentrations of PQ (5-10 microM) increased PMCA basal activity by two-fold but abolished its sensitivity to CaM. Higher concentrations (25-100 microM) inhibited both components of PMCA activity. Immunoblots showed the formation of high-molecular-weight PMCA aggregates. Additionally, PMCA showed evidence of proteolytic degradation. PMCA proteolysis was prevented by a calpain inhibitor, suggesting a role for calpain. Our findings suggest that PMCA is a sensitive target of oxidative stress in primary neurons. Inactivation of this Ca(2+) transporter under prolonged oxidative stress could alter neuronal Ca(2+) signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789485PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2009.08.018DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
pmca
9
plasma membrane
8
membrane ca2+-atpase
8
effects paraquat-induced
4
oxidative
4
paraquat-induced oxidative
4
stress
4
stress neuronal
4
neuronal plasma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!