We report five mutations, three of them novel, responsible for maple syrup urine disease in four unrelated Cypriot families. The five children studied are the first cases of classic maple syrup urine disease to be reported among Cypriots. The first novel mutation identified is a single-base deletion in exon 6 of the Elalpha gene (c.718delG), which leads to a frameshift after Ala240 and to a stop codon 89 residues further downstream. The other two novel mutations identified are in the Elbeta subunit: a two-base deletion in exon 6, c.662_663delCC, which leads to a frameshift after Ala221 and creates a stop codon 17 residues further downstream, as well as a splice mutation, IVS3[+3]delA, which results in the skipping of exon 3. The two known mutations identified are in the Elalpha gene: the G > C transversion at the 3'-splice acceptor site, (IVS5-1G > C), which results in the deletion of the entire exon 6, and the missense mutation in exon 5 (c.632C > T), which corresponds to a p.Thr211Met substitution. The p.Thr211Met substitution is located in a potassium-ion pocket in the E1 component required for stability of the bound cofactor thiamine diphosphate. The mutant E1 protein harboring the p.Thr211Met substitution was shown unable to bind thiamine diphosphate, leading to undetectable E1 activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953248 | PMC |
http://dx.doi.org/10.1089/gtmb.2009.0065 | DOI Listing |
Neurochem Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Pediatric Endocrinologist, Metabolic Disorders Research Center, Molecular-cellular Endocrinology & Metabolism Research Institute, Tehran University of medical Sciences, Tehran, Iran.
Maple Syrup Urine Disease (MSUD) disease is a defect in the function of the Branched-chain 2-ketoacid dehydrogenase complex (BCKDH). It is caused by pathogenic biallelic variants in BCKDHA, BCKA decarboxylase, or dihydrolipoamide dehydrogenase. The brain is the major organ involved in MSUD.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Pediatrics, Konya City Hospital, University of Health Sciences, Konya, Türkiye.
Objectives: Acrodermatitis dysmetabolica (AD) is a dermatologic manifestation associated with inherited metabolic disorders (IMDs), distinct from acrodermatitis enteropathica, which occurs solely due to zinc deficiency.
Case Presentation: This report presents two pediatric cases: a 30-month-old girl with maple syrup urine disease (MSUD) experiencing AD secondary to severe isoleucine deficiency due to a protein-restricted diet, showing improvement with dietary adjustments, and a 2.5-month-old boy infant with propionic acidemia (PA) who developed AD alongside septic shock, which progressed despite intervention.
This study aims to determine the factors associated with mortality and neurodevelopmental morbidity in patients with Maple Syrup Urine Disease (MSUD) seen at a tertiary hospital in the Philippines during a 10-year period. The medical records of patients diagnosed with MSUD seen at Philippine General Hospital (PGH) from 2010 to 2019 were reviewed. Socioeconomic, healthcare, and clinical factors were determined.
View Article and Find Full Text PDFJIMD Rep
January 2025
Division of Genetics and Genomic Medicine, Department of Pediatrics Washington University School of Medicine St. Louis Missouri USA.
Maple syrup urine disease (MSUD) is an inborn error of metabolism characterized by the accumulation of branched-chain amino acids (leucine, isoleucine, and valine) caused by a defect in the branched-chain alpha-keto acid dehydrogenase complex. Liver transplant is an effective therapy for MSUD, and patients can usually tolerate a regular diet after transplant without symptomatic metabolic decompensation. Most post-transplant patients do not follow a sick-day diet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!