An interlaboratory comparison was carried out to evaluate the effectiveness of a method based on HPTLC in which reagent-free derivatization is followed by UV/fluorescence detection. The method was tested for the determination of sucralose (C12H19C13O8; (2R,3R,4R,5S,6R)-2-[(2R,3S,4S,5S)-2,5-bis(chloromethyl)-3,4-dihydroxyoxolan-2-yl]oxy-5-chloro-6-hydroxymethyl)oxane-3, 4-diol; CAS Registry No. 56038-13-2) in carbonated and still beverages at the proposed European regulatory limits. For still beverages, a portion of the sample was diluted with methanol-water. For carbonated beverages, a portion of the sample was degassed in an ultrasonic bath before dilution. Turbid beverages were filtered after dilution through an HPLC syringe filter. The separation of sucralose was performed by direct application on amino-bonded (NH2) silica gel HPTLC plates (no cleanup needed) with the mobile phase acetonitrile-water. Sucralose was determined after reagent-free derivatization at 190 degrees C; it was quantified by measurements of both UV absorption and fluorescence. The samples, both spiked and containing sucralose, were sent to 14 laboratories in five different countries. Test portions of a sample found to contain no sucralose were spiked at levels of 30.5, 100.7, and 299 mg/L. Recoveries ranged from 104.3 to 124.6% and averaged 112% for determination by UV detection; recoveries ranged from 98.4 to 101.3% and averaged 99.9% for determination by fluorescence detection. On the basis of the results for spiked samples (blind duplicates at three levels), as well as sucralose-containing samples (blind duplicates at three levels and one split level), the values for the RSDr ranged from 10.3 to 31.4% for determinations by UV detection and from 8.9 to 15.9% for determinations by fluorescence detection. The values for the RSDR values ranged from 13.5 to 31.4% for determinations by UV detection and from 8.9 to 20.7% for determinations by fluorescence detection.
Download full-text PDF |
Source |
---|
Inorg Chem
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India.
The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, 621112, India.
By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.
View Article and Find Full Text PDFMol Biol Rep
January 2025
State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!