Cell death requires coordinated intracellular signalling before disassembly of cell architecture by degradative enzymes. Although the death signalling cascades that involve the mitochondria, the ER and the plasma membrane have been extensively characterized, only a handful of studies have examined the functional and structural alterations of the nuclear pore complex (NPC) during neuronal death. Here, we show that during excitotoxic neuronal degeneration calpains redistributed across the nuclear envelope and mediated the degradation of NPC components causing altered permeability of the nuclear membrane. In primary dissociated neurons, simultaneous recording of cytosolic [Ca(2+)] and localization of fluorescent proteins showed that the onset of Ca(2+) overload signalled a progressive increase in the diffusion of small reporter molecules across the nuclear envelope. Later, calpain-mediated changes in nuclear pore permeability allowed accumulation of large proteins in the nucleus. Further, in a model of excitotoxic neuronal degeneration in Caenorhabditis elegans, we found similar nuclear changes and redistribution of fluorescent probes across the nuclear membrane in dying neurons. Our findings strongly suggest that increased leakiness of the nuclear barrier affects nucleocytoplasmic transport, alters the localization of proteins across the nuclear envelope and it is likely to be involved in Ca(2+)-dependent cell death, including ischemic neuronal demise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/cdd.2009.112 | DOI Listing |
Structure
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2).
View Article and Find Full Text PDFViruses
December 2024
Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil.
Necroptosis is a regulated form of cell death implicated in several pathological conditions, including viral infections. In this study, we investigated the expression and correlation of necroptosis markers MLKL, RIP1 and RIP3 in human liver tissue from fatal cases of yellow fever (YF) using immunohistochemistry (IHC). The liver samples were obtained from 21 YF-positive individuals and five flavivirus-negative controls with preserved liver parenchymal architecture.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden.
Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
PARC-Balochistan Agricultural Research and Development Center, Quetta, 87300, Pakistan.
Background: Grain number (GN) is one of the key yield contributing factors in modern wheat (Triticum aestivum) varieties. Fruiting efficiency (FE) is a key trait for increasing GN by making more spike assimilates available to reproductive structures. Thousand grain weight (TGW) is also an important component of grain yield.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!