The let-7 microRNA (miRNA) is an ultraconserved regulator of stem cell differentiation and developmental timing and a candidate tumor suppressor. Here we show that LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 processing in Caenorhabditis elegans. We demonstrate that lin-28 is necessary and sufficient to block let-7 activity in vivo; LIN-28 directly binds let-7 pre-miRNA to prevent Dicer processing. Moreover, we have identified a poly(U) polymerase, PUP-2, which regulates the stability of LIN-28-blockaded let-7 pre-miRNA and contributes to LIN-28-dependent regulation of let-7 during development. We show that PUP-2 and LIN-28 interact directly, and that LIN-28 stimulates uridylation of let-7 pre-miRNA by PUP-2 in vitro. Our results demonstrate that LIN-28 and let-7 form an ancient regulatory switch, conserved from nematodes to humans, and provide insight into the mechanism of LIN-28 action in vivo. Uridylation by a PUP-2 ortholog might regulate let-7 and additional miRNAs in other species. Given the roles of Lin28 and let-7 in stem cell and cancer biology, we propose that such poly(U) polymerases are potential therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988485 | PMC |
http://dx.doi.org/10.1038/nsmb.1675 | DOI Listing |
ACS Chem Biol
October 2024
Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
This study focused on the efficient post-transcriptional incorporation of a modified nucleoside at the end of the poly-A tail of mRNA. The modified mRNA was obtained in high yield and served to enhance protein expression. Utilizing poly-U polymerase, our method successfully enabled a single 2'OMeU residue to be incorporated into mRNA, which unexpectedly provided significant stabilization, even with only a single incorporation, to enhance the resistance of mRNA to degradation by cellular exonuclease.
View Article and Find Full Text PDFGenetics
October 2024
Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
Terminal nucleotidyltransferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.
View Article and Find Full Text PDFNat Biotechnol
July 2024
Department of Genetics, Harvard Medical School, Boston, MA, USA.
RNA oligonucleotides have emerged as a powerful therapeutic modality to treat disease, yet current manufacturing methods may not be able to deliver on anticipated future demand. Here, we report the development and optimization of an aqueous-based, template-independent enzymatic RNA oligonucleotide synthesis platform as an alternative to traditional chemical methods. The enzymatic synthesis of RNA oligonucleotides is made possible by controlled incorporation of reversible terminator nucleotides with a common 3'-O-allyl ether blocking group using new CID1 poly(U) polymerase mutant variants.
View Article and Find Full Text PDFRSC Med Chem
May 2024
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP).
View Article and Find Full Text PDFChemistry
April 2024
Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France.
Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!