Preexposure of hydroxyapatite (HA) to polyphosphate reduced the near-equilibrium acid solubility of HA, the mineralization of HA, and the exchange of PO4 between medium and HA. Appreciably longer exposure times were required for maximal effects of trimetaphosphate (TMP) than of pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphosphate (HMP). Calcifying solution solubilized small amounts of the HA-bound polyphosphates. This occurred to the smallest extent in the case of TMP, a fact which could have relevance for the superior anticaries effect of TMP.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00220345770560060501DOI Listing

Publication Analysis

Top Keywords

solubility mineralization
8
effects polyphosphates
4
polyphosphates solubility
4
mineralization relevance
4
relevance rationale
4
rationale anticaries
4
anticaries activity
4
activity preexposure
4
preexposure hydroxyapatite
4
hydroxyapatite polyphosphate
4

Similar Publications

We develop a technology based on competitive adsorption between drug molecules and water, specifically designed to address the critical issue of poor drug solubility. By specially engineering silica nanosurfaces with ultrahigh densities of silanol, we significantly enhance their affinity for both drug molecules and water, with a notably greater increase in water affinity. Such surfaces can effectively adsorb a variety of drug molecules under dry conditions.

View Article and Find Full Text PDF

Introduction: Observational studies have revealed a close relationship between reduced bone mineral density (BMD) and Alzheimer's disease (AD) risk. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) system, pivotal in regulating bone metabolism, has been implicated in brain function, but the causal impact on AD risk remains unclear.

Methods: We employed bi-directional Mendelian randomization (MR) and multivariable MR (MVMR) approaches to elucidate the effect of blood soluble RANKL (sRANKL) and OPG levels on AD, assessing whether this influence was independent of BMD and inflammation.

View Article and Find Full Text PDF

Insights into Calcium Phosphate Formation Induced by the Dissolution of 45S5 Bioactive Glass.

ACS Biomater Sci Eng

January 2025

CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.

Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.

View Article and Find Full Text PDF

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Lithium recovery from mixed spent LFP-NMC batteries through atmospheric water leaching.

Sci Rep

January 2025

Technology Innovation, PT Pertamina (Persero), Jl. Raya Bekasi KM. 20 Cakung, East Jakarta, Jakarta, 13920, Republic of Indonesia.

Selective lithium recovery from a mixture of LFP-NMC spent lithium batteries presents significant challenges due to differing structures and elemental compositions of the batteries. These differences necessitate a distinct recycling pathway for each, complicating the process for the mixture. This study explored a carbothermal reduction approach combined with water leaching under atmospheric conditions to achieve a selective lithium recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!