Migration of contaminants with low affinity for the aqueous phase is essentially governed by interaction with mobile carriers such as humic colloids. Their impact is, however, not sufficiently described by interaction constants alone since the humic carriers themselves are subject to a solid-liquid distribution that depends on geochemical parameters. In our study, co-adsorption of the REE terbium (as an analogue of trivalent actinides) and humic acid onto three clay materials (illite, montmorillonite, Opalinus clay) was investigated as a function of pH. (160)Tb(III) and (131)I-labelled humic acid were employed as radiotracers, allowing experiments at very low concentrations to mimic probable conditions in the far-field of a nuclear waste repository. Humate complexation of Tb was examined by anion and cation exchange techniques, also considering competitive effects of metals leached from the clay materials. The results revealed that desorption of metals from clay barriers, occurring in consequence of acidification processes, is generally counteracted in the presence of humic matter. For all clay materials under study, adsorption of Tb was found to be enhanced in neutral and acidic systems with humic acid, which is explained by additional adsorption of humic-bound Tb. A commonly used composite approach (linear additive model) was tested for suitability in reconstructing the solid-liquid distribution of Tb in ternary systems (Tb/humic acid/clay) on the basis of data determined for binary subsystems. The model can qualitatively explain the influence of humic acid as a function of pH, but it failed to reproduce our experimental data quantitatively. It appears that the elementary processes (metal adsorption, metal-humate complexation, humic acid adsorption) cannot be considered to be independent of each other. Possible reasons are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2009.07.009 | DOI Listing |
Water Res
January 2025
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China. Electronic address:
The influence of algal organic matter (AOM) on the settling performance of algal flocs remains poorly understood. To address this, we employed fractionation techniques based on molecular weight to isolate different AOM fractions and analyzed their effects on floc structure and settling performance. This involved comparing the concentrations, compositions, potentials, and functional groups of organic matter before and after coagulation-sedimentation.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Crop Science Discipline, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biomedical Engineering, Istanbul AREL University, 34537 Istanbul, Turkey.
Three-dimensional (3D) printing is a rapidly evolving technology. This study focuses on developing biopolymeric inks tailored for Three-dimensional (3D) printing applications, specifically to produce 3D-printed materials for wound dressing. Humic Acid (HA) was incorporated into the ink formulations due to its anti-inflammatory properties.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Postgraduate Program in Health Sciences (PPGCS), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil.
The progression of periodontal disease (PD) involves the action of oxidative stress mediators. Antioxidant agents may potentially attenuate the development of this condition. Thus, we aimed to evaluate the effects of different doses of humic acid (HA), extracted from biomass vermicomposting, on redox status and parameters related to PD progression in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!