Background: The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy.

Methods: We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays.

Results: In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect.

Conclusion: Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087338PMC
http://dx.doi.org/10.1186/1471-2407-9-301DOI Listing

Publication Analysis

Top Keywords

nitroreductase gene
12
codon usage
12
mammalian cells
12
gene
8
high-level expression
8
prodrug cb1954
8
cancer gene
8
usage mammalian
8
mammalian preferences
8
bacterial ntr
8

Similar Publications

Background: We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone).

View Article and Find Full Text PDF
Article Synopsis
  • Trichomoniasis, caused by the parasite Trichomonas vaginalis, is a common sexually transmitted infection affecting both genders, with metronidazole being the primary treatment.
  • A study analyzed vaginal and urine samples to identify mutations in nitroreductase genes (ntr4 and ntr6), finding multiple point mutations that may contribute to treatment resistance.
  • The mutations (notably C213G and A438T) can result in truncated proteins, and docking analysis indicates a reduction in binding affinity to metronidazole, suggesting a potential increase in resistance to this treatment in Chile.
View Article and Find Full Text PDF

PHR1 negatively regulates nitrate reductase activity by directly inhibiting the transcription of NIA1 in Arabidopsis.

J Plant Physiol

December 2024

Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:

Nitrogen (N) and phosphorus (P), as indispensable mineral elements, both play pivotal roles in plant growth and development. Despite the intimate association between nitrate signaling and inorganic phosphate (Pi) signaling, the regulatory function of Pi in N metabolism remains poorly understood. In this study, we observed that Pi deficiency leads to a reduction in the activity of nitrate reductase (NR), an essential enzyme involved in N metabolism.

View Article and Find Full Text PDF

Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve.

View Article and Find Full Text PDF

The recently proposed partial denitrification (PD), terminating nitrate reduction to nitrite, has been regarded as a promising alternative to nitrite supplying for anammox bacteria. The most important aspect of the PD process for engineering application is the stable and continuous supply of nitrite. However, the activity of nitrate reductase is often higher than that of nitrite reductase (NIR), making it difficult to accumulate nitrite during the denitrification process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!