A self-assembled monolayer (SAM) on gold was formed with specifically perdeuterated hexaethylene glycol-terminated alkanethiol HS(CD(2))(12)(O-CH(2)-CH(2))(6)OCH(3) (D-OEG). The structure of the d-alkane and the oligoethylene glycol (OEG) parts of the molecule in a SAM was studied by means of polarization modulation infrared reflection absorption spectroscopy. The D-OEG monolayers are highly ordered and exist in a crystalline phase. The d-alkane chain adopts an all-trans conformation. Both, the d-alkane chain and long axis of the OEG part make an angle of 26.0 degrees +/- 1.5 degrees with respect to the surface normal, a value characteristic for the tilt of solid n-alkane thiols in the SAMs on Au. The positions of nu(as)(COC) and CH(2) wagging and rocking modes indicate a helical arrangement of the OEG chains. The D-OEG SAMs were exposed to 25 muM Br(2) in two ways: (i) by immersion into the Br(2) solution and (ii) in the galvanic cell Au|D-OEG SAM|25 muM Br(2) + 0.1 M Na(2)SO(4)|| 50 muM KBr + 0.1 M Na(2)SO(4)|Au. In the galvanic cell, the oxidant (Br(2)) is scavenged by a heterogeneous electron transfer reaction, slowing the reaction of D-OEG with Br(2). The slow progress of the reaction with Br(2) allowed us to draw conclusions about molecular rearrangements taking place during this reaction. The reaction with Br(2) starts on boundaries and/or defects present in the SAM. First, at the defect place, the alpha-C atom of the OEG chain reacts with Br(2) and the OEG part of the molecule is removed from the monolayer. In consequence an increase in disorder in the OEG part of the SAM is observed. The same mechanism of the reaction with Br(2) is applied for the d-dodecane alkanethiol part of the molecule. This reaction is slow, thus the order and the tilt of the hydrocarbon chain changes only a little during the reaction time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la9020993 | DOI Listing |
ACS Catal
April 2024
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Pharm Dev Technol
January 2025
Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, China.
Sci Rep
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mg L. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br (second-order reaction rate constant of (2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Edinburgh, Chemistry, South Bridge, EH8 9YL, Edinburgh, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Organofluorine compounds are vital across multiple sectors, hence highly selective methods to install fluorine are of considerable importance. The deoxyfluorination of alcohols is a key approach to prepare organofluorine compounds, however, a highly secondary (2°)-selective deoxyfluorination of alcohols has not been realized to date. Herein, we report that borane-mediated deoxyfluorination results in high 2°-selectivity in inter- and intra-molecular competition reactions versus primary (1°), tertiary (3°) and even benzylic (Bn) alcohols.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China.
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br and Cl) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and HBO permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!