Identification and monitoring of degradation products is a critical aspect of drug product stability programs. This process can present unique challenges when working with complex biopharmaceutical formulations that do not readily lend themselves to straightforward HPLC analysis. The therapeutic 34 amino acid parathyroid hormone fragment (PTH1-34) contains methionine (Met) residues at positions 8 and 18. Oxidation of these Met residues results in reduced biological activity and thus efficacy of the potential drug product. Here, we present an effective approach for the identification of PTH1-34 oxidation products in a drug product formulation in which the stability indicating method used non-MS compatible HPLC conditions to separate excipients, drug substance and degradation products. High resolution and tandem mass spectrometers were used in conjunction with cyanogen bromide (CNBr) mediated digestion to accurately identify the oxidation products observed in an alternative MS compatible HPLC method used for drug substance analysis. All anticipated CNBr digested peptide fragments, including both oxidized and nonoxidized peptide fragments, were positively identified using TOF MS without the need for additional enzymatic digestion. Once identified, the oxidation products generated were injected onto the original non-MS compatible HPLC drug product stability indicating method and the respective retention times were confirmed. This allowed the oxidative stability of different formulations to be effectively monitored during the solid state stability program and during variant selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.21901 | DOI Listing |
BMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFSci Rep
January 2025
School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!