Background: Enterococci, and especially multiresistant Enterococcus faecium, are increasingly found colonizing hospitalized patients. This increased prevalence of colonization is not only associated with an increased prevalence of infections caused by enterococci, but also by infections with other nosocomial pathogens. In this study we investigated the causality of this observed relationship, by determining the influence of intestinal colonization with E. faecium on pulmonary defense against Pseudomonas aeruginosa.

Methodology/principal Findings: Three groups of mice were tested; 2 groups of mice were pre-treated with vancomycin, of which one group was subsequently treated by oral gavage of vancomycin-resistant E. faecium (VRE). The third group did not receive any pre-treatment. P. aeruginosa pneumonia was induced in all mice. Vancomycin treatment resulted in intestinal gram-negative bacterial overgrowth and VRE treatment resulted in colonization throughout the intestines. All 3 groups of mice were able to clear P. aeruginosa from the lungs and circulation, with comparable lung cytokine responses and lung damage. Mice treated with vancomycin without VRE colonization displayed modestly increased plasma levels of TNF-alpha and IL-10.

Conclusion: Overgrowth of E. faecium and/or gram-negative bacteria does not impact importantly on pulmonary defense against P. aeruginosa pneumonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729381PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006775PLOS

Publication Analysis

Top Keywords

pulmonary defense
12
groups mice
12
intestinal colonization
8
enterococcus faecium
8
defense pseudomonas
8
increased prevalence
8
aeruginosa pneumonia
8
mice
6
faecium
5
colonization enterococcus
4

Similar Publications

Early detection of lung cancer is crucial for improving patient outcomes. Although advances in diagnostic technologies have significantly enhanced the ability to identify lung cancer in earlier stages, there are still limitations. The alarming rate of false positives has resulted in unnecessary utilization of medical resources and increased risk of adverse events from invasive procedures.

View Article and Find Full Text PDF

Inhalable biohybrid microrobots: a non-invasive approach for lung treatment.

Nat Commun

January 2025

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.

Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes.

View Article and Find Full Text PDF

Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!