Patients with Alport's syndrome develop a number of pro-inflammatory cytokine and matrix metalloproteinase (MMP) abnormalities that contribute to progressive renal failure. Changes in the composition and structure of the glomerular basement membranes likely alter the biomechanics of cell adhesion and signaling in these patients. To test if enhanced strain on the capillary tuft due to these structural changes contributes to altered gene regulation, we subjected cultured podocytes to cyclic biomechanical strain. There was robust induction of interleukin (IL)-6, along with MMP-3, -9, -10, and -14, but not MMP-2 or -12 by increased strain. Neutralizing antibodies against IL-6 attenuated the strain-mediated induction of MMP-3 and -10. Alport mice treated with a general inhibitor of nitric oxide synthase (L-NAME) developed significant hypertension and increased IL-6 and MMP-3 and -10 in their glomeruli relative to those of normotensive Alport mice. These hypertensive Alport mice also had elevated proteinuria along with more advanced histological and ultrastructural glomerular basement membrane damage. We suggest that MMP and cytokine dysregulation may constitute a maladaptive response to biomechanical strain in the podocytes of Alport patients, thus contributing to glomerular disease initiation and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780007PMC
http://dx.doi.org/10.1038/ki.2009.324DOI Listing

Publication Analysis

Top Keywords

biomechanical strain
12
mmp-3 -10
12
alport mice
12
gene regulation
8
glomerular disease
8
glomerular basement
8
il-6 mmp-3
8
alport
5
strain maladaptive
4
maladaptive gene
4

Similar Publications

Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: From shear modulus-ankle angle to stress-strain characteristics.

J Appl Physiol (1985)

January 2025

Experimental Biomechanics Group, Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Germany.

Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscle group in 14 volunteers (7 females, 25.

View Article and Find Full Text PDF

Recurrent sports injuries present complex challenges that extend beyond the playing field, impacting athletes' physical well-being, mental resilience, and financial stability. This review outlines a comprehensive framework designed to prevent and manage these setbacks, empowering athletes to achieve sustained performance and recovery. This multidimensional issue requires an integrative approach encompassing physical rehabilitation, psychological resilience, and nutritional strategies.

View Article and Find Full Text PDF

Axillary crutches assist people with lower limb injuries but can lead to upper limb strain with extended use. Spring-loaded crutches offer a potential solution, yet they are rarely tested in clinical settings. This study developed spring-loaded crutches with an integrated force-measuring system to analyze gait dynamics.

View Article and Find Full Text PDF

Comparison of the Performance of Nonlinear Time-Dependent Constitutive Models Calibrated with Minimal Test Data Applied to an Epoxy Resin.

Materials (Basel)

January 2025

CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.

Epoxy resins are extensively employed as adhesives and matrices in fibre-reinforced composites. As polymers, they possess a viscoelastic nature and are prone to creep and stress relaxation even at room temperature. This phenomenon is also responsible for time-dependent failure or creep fracture due to cumulative strain.

View Article and Find Full Text PDF

Influence of Different Solvents on the Mechanical Properties of Electrospun Scaffolds.

Materials (Basel)

January 2025

Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytinės Str. 25, 10105 Vilnius, Lithuania.

This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the produced nanofiber samples, and the nanofiber mechanical properties, yield strength, elastic modulus, and elastic elongation were calculated, and load-displacement and stress-strain dependence diagrams were compared from the obtained results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!