A simulation model for the prediction of tissue:plasma partition coefficients for drug residues in natural casings.

Vet J

Department of Pharmacology, Veterinary Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Bulgaria.

Published: September 2010

Tissue residues arise from the exposure of animals to undesirable substances in animal feed materials and drinking water and to the therapeutic or zootechnical use of veterinary medicinal products. In the framework of this study, an advanced toxicokinetic model was developed to predict the likelihood of residue disposition of licensed veterinary products in natural casings used as envelope for a variety of meat products, such as sausages. The model proved suitable for the calculation of drug concentrations in the muscles of pigs, cattle and sheep, the major species of which intestines are used. On the basis of drug concentrations in muscle tissue, the model allowed a prediction of intestinal concentrations and residues in the intestines that remained equal to or below the concentrations in muscle tissue, the major consumable product of slaughter animals. Subsequently, residues in intestines were found to be below the maximum residue limit value for muscle tissue when drugs were used according to prescribed procedures, including the application of appropriate withdrawal times. Considering the low consumption of natural casings (which represents only about 1-2% of the weight of a normal sausage), it was concluded that the exposure to drug residues from casings is negligible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2009.06.007DOI Listing

Publication Analysis

Top Keywords

natural casings
12
muscle tissue
12
drug residues
8
drug concentrations
8
concentrations muscle
8
residues intestines
8
residues
5
simulation model
4
model prediction
4
prediction tissueplasma
4

Similar Publications

Hydrogen is a promising clean energy source with geological reserves widely distributed globally, offering an annual flow exceeding 23 trillion grams. However, natural hydrogen extraction wells face unique safety challenges compared to conventional oil and gas wells. This paper reviews well safety concerns such as tubing/casing damage, cement/sealant failure, and excessive annular pressure buildup.

View Article and Find Full Text PDF

The zoonotic hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Meat from domestic pigs, which represent a major animal reservoir of HEV, plays a key role in HEV transmission. Although pork meat products can contain HEV-RNA, it is unknown whether infectious HEV is still present after their manufacturing process.

View Article and Find Full Text PDF

Manipulating button mushroom casing affects the disease dynamics of blotch and green mold disease.

Fungal Biol

December 2024

Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA.

Productive cultivation of the button mushroom (Agaricus bisporus) relies on the use of selective substrates and effective disease management. In extending our previous work on manipulating the developmental microbiome (devome), this study employs the strategy of substrate passaging to explore its effects on crop outcomes and disease dynamics. Here we subjected the casing substrate to ten cycles of passaging.

View Article and Find Full Text PDF

Pile foundation structures are widely used in the construction of high-piled wharves in coastal soft soil areas due to their excellent adaptability to such environments. However, the extensive, deep backfilling involved in constructing these wharves can easily induce negative skin friction (NSF) on the piles, resulting in safety issues such as excessive settlement during the service life of the structures. This paper presents an indoor model experiment to examine the distribution of the THE NSF under varying pile-top loads and surcharge effects on single pile and double-sleeve pile foundations.

View Article and Find Full Text PDF

This experiment was carried out to provide a comprehensive insight into the protein activities involved in dormancy establishment in seeds of common cocklebur (Xanthium strumarium), an annual plant with two dimorphic seeds contained in one casing known as a burr. These consist of a smaller dormant seed and a larger non-dormant seed. The proteome profile was compared between developing dormant and non-dormant seeds of Xanthium strumarium at five consecutive stages including three, 10, 20, 30, and 45 days after burr emergence (stages 1 to 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!