Aims: To characterize the antibacterial synergy of the antimicrobial peptide, ranalexin, used in combination with the anti-staphylococcal endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA), and to assess the combination's potential as a topical disinfectant or decolonizing agent for MRSA. MRSA causes potentially lethal infections, and pre-operative patients colonized with MRSA are often treated with chlorhexidine digluconate and mupirocin cream to eradicate carriage. However, chlorhexidine is unsuitable for some patients, and mupirocin resistance is increasingly encountered, indicating new agents are required.
Methods And Results: Using an ex vivo assay, ranalexin and lysostaphin tested in combination reduced viable MRSA on human skin to a greater extent than either compound individually. The combination killed bacteria within 5 min and remained effective and synergistic even in high salt and low pH conditions.
Conclusions: The combination is active against MRSA on human skin and under conditions that may be encountered in sweat.
Significance And Impact Of The Study: Although the exact mechanism of activity remains unresolved, considering its specific spectrum of activity, fast killing kinetics and low likelihood of resistance arising, the combination of ranalexin with lysostaphin warrants consideration as a new agent to eradicate nasal and skin carriage of Staph. aureus, including MRSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2672.2009.04472.x | DOI Listing |
Sci Rep
January 2025
Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, 313299, China.
Although an ongoing understanding of psoriasis vulgaris (PV) pathogenesis, little is known about the proteomic differences between moderate and severe psoriasis. In this cross-sectional study, we evaluated the proteomic differences between moderate and severe psoriasis using data-independent acquisition mass spectrometry (DIA-MS). 173 differentially expressed proteins (DEPs) were significantly differentially expressed between the two groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.
The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:
Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Background: The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is known for its capacity to cause severe neurological disease in Asia. Neurotropic flaviviruses within the Japanese encephalitis (JE) serogroup possess the distinctive feature of expressing a unique nonstructural protein, NS1'. The NS1' protein consists of the full NS1 protein with an additional 52 amino acid extension at the C-terminus and has been demonstrated to exhibit virulence in mammalian hosts upon infection.
View Article and Find Full Text PDFJADA Found Sci
October 2024
Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.
The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!