The homogeneous nucleation of water was studied experimentally in this work using a thermal diffusion cloud chamber; droplets were counted by the photomultiplier method and helium was used as a carrier gas. The nucleation rates range from 3x10(-2) to 3x10(1) cm(-3) s(-1) and six isotherms from 295 to 320 K with step of 5 K are measured. The experimental setup and obtained data are mutually compared to our previous publication [Brus et al., J. Chem. Phys. 129, 174501 (2008)], where the droplets were counted using digital photography and image processing. The molecular content of the critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of the nucleation rate of water on the saturation ratio were compared with previously published data of others, several theoretical predictions, and the former nucleation onset data. The aim of the present investigation was to show for the first time that nucleation results can be quantitatively reproduced with two different experimental setups operated in different ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3211105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!