AI Article Synopsis

  • The study investigates the radiative association of CN using both quantum dynamical and semiclassical methods, highlighting the influence of shape resonances.
  • The researchers found that these resonances, which are due to states trapped by the centrifugal barrier, significantly impact the energy-resolved cross sections of the reactions.
  • The results reveal that while the semiclassical approach is fairly accurate above room temperature (within 25%), the effects of shape resonances become more crucial for lower temperatures.

Article Abstract

Radiative association of CN is simulated using a quantum dynamical as well as a semiclassical approach. A comparison of the resulting energy-resolved cross sections reveals striking quantum effects that are due to shape resonances. These, in turn, arise because of states that are quasibound by the centrifugal barrier. The quantal rate coefficient for temperatures from 40 to 1900 K has been computed using the Breit-Wigner theory to account for the resonances. Comparison with the results obtained by Singh and Andreazza [Astrophys. J. 537, 261 (2000)] shows that the semiclassical method, which completely omits the shape resonances, is accurate to within 25% above room temperature. At lower temperatures the contribution from the shape resonances to the radiative association rate is more significant.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3196179DOI Listing

Publication Analysis

Top Keywords

radiative association
12
shape resonances
12
rate coefficient
8
quantum effects
8
coefficient formation
4
formation radiative
4
association theoretical
4
theoretical study
4
study quantum
4
effects radiative
4

Similar Publications

Satellite observations from the Clouds and the Earth's Radiant Energy System show that Earth's energy imbalance has doubled from 0.5 ± 0.2 Wm during the first 10 years of this century to 1.

View Article and Find Full Text PDF

This work looks into how well Cu-doped zinc oxide works as a photocatalyst when exposed to visible light to break down sulphanilamide. The synthesized samples were characterized by XRD and then FTIR techniques for structural besides compositional analysis. The approximate value of bandgap found out by NBE values of PL spectra showed a decrease in bandgap with doping.

View Article and Find Full Text PDF

Radiative corrections are crucial for modern high-precision physics experiments, and are an area of active research in the experimental and theoretical community. Here we provide an overview of the state of the field of radiative corrections with a focus on several topics: lepton-proton scattering, QED corrections in deep-inelastic scattering, and in radiative light-hadron decays. Particular emphasis is placed on the two-photon exchange, believed to be responsible for the proton form-factor discrepancy, and associated Monte-Carlo codes.

View Article and Find Full Text PDF

Narrow-bandgap (NBG) Sn-Pb mixed perovskite solar cells (PSCs) represent a promising solution for surpassing the radiative efficiency of single-junction solar cells. The unique bandgap tunability of halide perovskites enables optimal tandem configurations of wide-bandgap (WBG) and NBG subcells. However, these devices are limited by the susceptibility of Sn in the NBG bottom cell to being oxidized to Sn, creating detrimental Sn vacancies.

View Article and Find Full Text PDF

Extreme precipitation events are projected to intensify with global warming, threatening ecosystems and amplifying flood risks. However, observation-based estimates of extreme precipitation-temperature (EP-T) sensitivities show systematic spatio-temporal variability, with predominantly negative sensitivities across warmer regions. Here, we attribute this variability to confounding cloud radiative effects, which cool surfaces during rainfall, introducing covariation between rainfall and temperature beyond temperature's effect on atmospheric moisture-holding capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!