Here, we report two synthetic oligopeptide-based, thermoreversible, pH-sensitive hydrogels. In gel phase, these self-assembling tetrapeptides form a long interconnected nanofibrilar network structure, as is evident from various microscopic techniques, including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). FTIR, circular dichroism, and wide angle X-ray diffraction (WAXD) favor an antiparallel beta-sheet structure of these gelators in the gel state. Finally, these hydrogels have been utilized for entrapment and slow release of an anticancer drug doxorubicin at physiological pH, promising their future application as a drug delivery vehicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp904251j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!