Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Risk assessment of nanoparticles by inhalation experiments is of great importance since inhalation is considered the most significant route of exposure to nanoparticles suspended in air. However, there have been few inhalation experiments using manufactured nanoparticles, mainly because of the difficulty in stably dispersing the nanoparticles in air for a long period of time. In this study, we report for the first time the development of a rational system for stably and continuously dispersing and supplying manufactured nanoparticles for inhalation experiments. The system was developed using a spray-drying technique, in which a nebulizer was used to atomize nickel oxide (NiO) and fullerene (C60) nanoparticle suspensions, and the resulting droplets were dried to generate aerosol nanoparticles. The size, concentration and morphology of the aerosol particles were evaluated by in-line measurements using an aerosol measuring device and off-line measurements based on the collection of the aerosol particles. After examining the effects of the conditions for the suspensions and the aerosol generation, we were able to obtain NiO and C60 aerosol nanoparticles with average diameters of 53-64 and 88-98 nm, respectively. By feeding these aerosols into a whole-body exposure chamber for rats, a stable supply of the aerosol nanoparticles could be achieved for long hourly durations (6 h per day) as well as for long terms (5 days per week for 4 weeks).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es9008773 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!