A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron. | LitMetric

Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron.

Environ Sci Technol

Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, Michigan 48109-2125, USA.

Published: July 2009

The gas-phase dissociation of perchloroethene (PCE), trichloroethene (TCE), and cis-dichloroethene (cis-DCE) on zerovalent iron Fe(110) was investigated using periodic density functional theory (DFT) with the generalized gradient approximation (GGA) and climbing image nudged elastic band method (CI-NEB). Activation energies and dechlorination rate constants for reductive beta-elimination of the chloroethene compounds were calculated using an Arrhenius equation with theoretically calculated vibrational frequencies for the compounds. Activation energies were found to decrease as the chlorination number increases. The reaction rate-limiting step for PCE dissociation occurs at the second chlorine cleavage, while the rate-limiting steps for TCE and cis-DCE occur at the first chlorine cleavage. The activation energies of PCE, TCE, and cis-DCE at their rate-limiting steps are 9.9, 16.6, and 23.8 kJ/mol, respectively. Energy profiles along the reaction coordinate for the dechlorination paths are presented. The relative gas-phase reactivity order among chlorothenes on Fe(110) was found to be PCE > TCE > cis-DCE. At room temperature (300 K), the PCE dechlorination rate is 14 and 338 times faster, respectively, than that of TCE and cis-DCE. Details regarding the electronic properties of the transition states of the dechlorinated compounds are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9003203DOI Listing

Publication Analysis

Top Keywords

tce cis-dce
16
activation energies
12
density functional
8
functional theory
8
zerovalent iron
8
dechlorination rate
8
chlorine cleavage
8
rate-limiting steps
8
pce tce
8
pce
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!