The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la803831c | DOI Listing |
Front Chem
January 2025
Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.
Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.
View Article and Find Full Text PDFNanoscale
January 2025
Institute Nanoscience - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy.
A multiscale approach is employed to investigate the interaction dynamics between interleukin-6, a key cancer biomarker, and alkyl-functionalized surfaces, with the ultimate goal of guiding biosensor design. The study integrates classical molecular dynamics, Brownian dynamics simulations, and binding experiments to explore the adsorption dynamics and energetics of IL-6 on surfaces modified with self-assembled monolayers (SAMs). The comparative analysis reveals a dramatic effect on the interaction strength of IL-6 with a SAMs comprising a mix of charged and hydrophobic ligands.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, PR China.
The interfacial molecular dipole enhances the photovoltaic performance of perovskite solar cells (PSCs) by facilitating improved charge extraction. However, conventional self-assembled monolayers (SAMs) face challenges like inadequate interface coverage and weak dipole interactions. Herein, we develop a strategy using a self-assembled ferroelectric layer to modify the interfacial properties of PSCs.
View Article and Find Full Text PDFSmall
January 2025
Department of Interface Chemistry and Surface Engineering, Max Planck Institute for Sustainable Materials, 40237, Düsseldorf, Germany.
Biosensors based on DNA aptamer receptors are increasingly used in diagnostic applications. To improve the sensitivity and specificity of aptasensors, parameters affecting the stability and binding efficiency of the receptor layer need to be identified and studied. For example, the blocking step, i.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK. Electronic address:
Hypothesis: Bioengineered monoclonal antibodies (mAbs) have gained significant recognition as medical therapies. However, during processing, storage and use, mAbs are susceptible to interfacial adsorption and desorption, leading to structural deformation and aggregation, and undermining their bioactivity. To suppress antibody surface adsorption, nonionic surfactants are commonly used in formulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!