Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la8036605DOI Listing

Publication Analysis

Top Keywords

small angle
8
angle x-ray
8
x-ray scattering
8
electron microscopy
8
ftsz polymers
8
ftsz
6
analysis ftsz
4
ftsz assembly
4
assembly small
4
scattering electron
4

Similar Publications

Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.

View Article and Find Full Text PDF

The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.

View Article and Find Full Text PDF

Background: MRI offers potential noninvasive detection of Alzheimer's micropathology. The AD hippocampus exhibits microscopic pathological changes such as tau tangles, iron accumulation and late-stage amyloid. Validating these changes from ultra-high-resolution ex-vivo MRI through histology is challenging due to nonlinear 3D deformations between MRI and histological samples.

View Article and Find Full Text PDF

Heterogeneous dynamics in aging phosphate-based geopolymer.

J Chem Phys

January 2025

Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic.

The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity.

View Article and Find Full Text PDF

Purpose: To evaluate a new regression-derived nomogram for high myopic astigmatism in small incision lenticule extraction (SMILE) surgery.

Methods: In this prospective study, data from 180 eyes with myopic astigmatism ranging from -2.50 to -4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!