Microbubbles coated with disaturated lipids and DSPE-PEG2000: phase behavior, collapse transitions, and permeability.

Langmuir

Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA.

Published: April 2009

Saturated diacyl (disaturated) phosphatidylcholine (PC) mixed with the lipopolymer distearoylphosphatidylethanolamine (DSPE)-polyethyleneglycol molecular weight 2000 (PEG2000) self-assemble as a monolayer at the air-water interface of air-in-water micrometer-scale bubbles (microbubbles), similar to coatings (shells) on leading medical ultrasound contrast agents (UCAs). This system is characterized here to study the impact of the DSPE-PEG2000 species and PC chain-length on the monolayer coating phase behavior, collapse, shedding, and air transport resistance and microbubble dissolution rate and surface contour. Using fluorescence microscopy of dissolving microbubbles, we found that film microstructure and collapse behavior for all chain lengths (n = 14-20) was indicative of primarily condensed phase monolayers, unlike similar coatings containing polyethyleneglycol 40 stearate (PEG40S) that are either expanded phase or coexisting expanded-condensed phase monolayers. Additionally, we observed a new surface buckling type of behavior with all chain lengths, by bright field microscopy, where the air-water interface continuously appears rough (rather than cyclically rough and smooth), with this behavior most frequently observed for n = 16. In correlating the statistical frequency of this behavior with the monolayer microstructure, we propose that it arises from a slowed nucleation rate of collapse structures at condensed-condensed phase interfaces, not present in systems containing PEG40S. By modeling the dissolution (radius vs time) data, we obtained, for each chain length, the film air transport resistance (R(shell)) that was then fit to a chain-length-dependent energy barrier model. Importantly, the pre-exponential factor was approximately 10 x higher and the microbubbles persisted approximately 4 x longer (from 15 microm at a fixed dissolved oxygen content) in comparison to previously studied films containing PEG40S. We attribute the unique stability properties of microbubble coatings containing DSPE-PEG2000 to the propensity of this molecule to form a condensed-phase monolayer, such that the monolayer coatings approach the properties of one continuous condensed domain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la803774qDOI Listing

Publication Analysis

Top Keywords

phase behavior
8
behavior collapse
8
air-water interface
8
air transport
8
transport resistance
8
behavior chain
8
chain lengths
8
phase monolayers
8
phase
6
behavior
6

Similar Publications

The Stockholm Early Detection of Cancer Study (STEADY-CAN) cohort was established to investigate strategies for early cancer detection in a population-based context within Stockholm County, the capital region of Sweden. Utilising real-world data to explore cancer-related healthcare patterns and outcomes, the cohort links extensive clinical and laboratory data from both inpatient and outpatient care in the region. The dataset includes demographic information, detailed diagnostic codes, laboratory results, prescribed medications, and healthcare utilisation data.

View Article and Find Full Text PDF

Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.

Brain Topogr

January 2025

Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Background: A didelphic uterus represents a unique and infrequent congenital condition in which a woman possesses two distinct uteri, each with its own cervix. This anomaly arises due to partial or incomplete merging of the Müllerian ducts during the developmental stages in the womb. Accounting for uterine malformations, a didelphic uterus is a relatively rare condition, affecting approximately 0.

View Article and Find Full Text PDF

Introduction: Traumatic injuries are a significant public health concern globally, resulting in substantial mortality, hospitalisation and healthcare burden. Despite the establishment of specialised trauma centres, there remains considerable variability in trauma-care practices and outcomes, particularly in the initial phase of trauma resuscitation in the trauma bay. This stage is prone to preventable errors leading to adverse events (AEs) that can impact patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!