The knowledge of the biodistribution of macromolecular drug formulations is a key to their successful development for specific tissue- and tumor-targeting after systemic application. Based on the polyplex formulations, we introduce novel drug nanocarriers, which we denote as "quantoplexes" incorporating near-infrared (IR)-emitting cadmium telluride (CdTe) quantum dots (QDs), polyethylenimine (PEI), and a macromolecular model drug [plasmid DNA (pDNA)], and demonstrate the ability of tracking these bioactive compounds in living animals. Intravenous application of bare QD into nude mice leads to rapid accumulation in the liver and peripheral regions resembling lymph nodes, followed by clearance via the liver within hours to days. Quantoplexes rapidly accumulate in the lung, liver, and spleen and the fluorescent signal is detectable for at least a week. Tracking quantoplexes immediately after intravenous injection shows rapid redistribution from the lung to the liver within 5 minutes, depending on the PEI topology and quantoplex formulation used. With polyethyleneglycol (PEG)-modified quantoplexes, blood circulation and passive tumor accumulation was measured in real time. The use of quantoplexes will strongly accelerate the development of tissue and tumor-targeted macromolecular drug carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835026 | PMC |
http://dx.doi.org/10.1038/mt.2009.201 | DOI Listing |
J Biomed Mater Res A
January 2025
Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA.
Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.
View Article and Find Full Text PDFACS Omega
December 2024
Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China.
The integration of different therapies to enhance the efficacy and minimize adverse reactions has become popular recently. This approach leverages the complementary mechanisms of action of different treatments, which can lead to better therapeutic outcomes and reduced side effects. Human serum albumin (HSA) exhibits excellent drug loading ability and is often used for biomimetic tumor delivery in multidrug nanocarriers.
View Article and Find Full Text PDFHeliyon
January 2025
BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000, Novi Sad, Serbia.
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer associated with poor survival rates. We developed novel mesoporous silica nanoparticles (MSNs)-based nanocarriers for pH-responsive delivery of a therapeutic drug Paclitaxel (PTX) to GBM tumor cells. The pores of MSNs are loaded with PTX, which is retained by β-cyclodextrin (CD) moieties covalently linked to the pore entrances through a hydrazone linkage, which is cleavable in weakly acidic environment.
View Article and Find Full Text PDFAntiinflamm Antiallergy Agents Med Chem
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
Background: Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.
View Article and Find Full Text PDFJ Control Release
January 2025
Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China. Electronic address:
Cisplatin (Cis), a potent chemotherapeutic agent, often causes acute kidney injury (AKI), limiting its clinical efficacy. RONS flares at the AKI site are a key factor in its progression. In this study, leveraging the advantages of cell membrane-coated biomimetic nanocarriers, we developed a multifunctional biomimetic nanodelivery system nano-RONS-sacrificial agent for AKI treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!