We used DNA microarrays to measure transcription and iTRAQ 2D liquid chromatography-mass spectrometry/mass spectrometry (a mass-tag labeling proteomic technique) to measure protein expression in 14 strains of Escherichia coli adapted for hundreds of generations to growth-limiting concentrations of either lactulose, methylgalactoside, or a 72:28 mixture of the two. The two ancestors, TD2 and TD10, differ only in their lac operons and have similar transcription and protein expression profiles. Changes in transcription and protein expression are observed at 30-250 genes depending on the evolved strain. Lactulose specialists carry duplications of the lac operon and show increased transcription and translation at lac. Methylgalactoside specialists are galS(-) and so constitutively transcribe and translate mgl, which encodes a transporter of methylgalactoside. However, there are two strains that carry lac duplications, are galS(-), and show increased transcription and translation at both operons. One is a generalist, the other a lactulose specialist. The generalist fails to sweep to fixation because its lac(+), galS(+) competitor expresses the csg adhesin and sticks to the chemostat wall, thereby preventing complete washout. Transcription and translation are sometimes decoupled. Lactulose-adapted strains show increased protein expression at fru, a fructose transporter, without evidence of increased transcription. This suggests that fructose, produced by the action of beta-galactosidase on lactulose, may leach from cells before being recouped. Reduced expression, at "late" flagella genes and the constitutive gat operon, is an adaptation to starvation. A comparison with two other long-term evolution experiments suggests that certain aspects of adaptation are predictable, some are characteristic of an experimental system, whereas others seem erratic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782325PMC
http://dx.doi.org/10.1093/molbev/msp187DOI Listing

Publication Analysis

Top Keywords

transcription translation
16
protein expression
16
increased transcription
12
transcription
8
transcription protein
8
expression
5
translation evolution
4
evolution specialists
4
specialists generalists
4
generalists dna
4

Similar Publications

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

Patterns of Isoform Variation for N Gene Subgenomic mRNAs in Betacoronavirus Transcriptomes.

Viruses

December 2024

Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.

The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.

View Article and Find Full Text PDF

Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.

View Article and Find Full Text PDF

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!