Recent discoveries suggest cysteine-stabilized toxins and antimicrobial peptides have structure-activity parallels derived by common ancestry. Here, human antimicrobial peptide hBD-2 and rattlesnake venom-toxin crotamine were compared in phylogeny, 3D structure, target cell specificity, and mechanisms of action. Results indicate a striking degree of structural and phylogenetic congruence. Importantly, these polypeptides also exhibited functional reciprocity: (i) they exerted highly similar antimicrobial pH optima and spectra; (ii) both altered membrane potential consistent with ion channel-perturbing activities; and (iii) both peptides induced phosphatidylserine accessibility in eukaryotic cells. However, the Na(v) channel-inhibitor tetrodotoxin antagonized hBD-2 mechanisms, but not those of crotamine. As crotamine targets eukaryotic ion channels, computational docking was used to compare hBD-2 versus crotamine interactions with prototypic bacterial, fungal, or mammalian Kv channels. Models support direct interactions of each peptide with Kv channels. However, while crotamine localized to occlude Kv channels in eukaryotic but not prokaryotic cells, hBD-2 interacted with prokaryotic and eukaryotic Kv channels but did not occlude either. Together, these results support the hypothesis that antimicrobial and cytotoxic polypeptides have ancestral structure-function homology, but evolved to preferentially target respective microbial versus mammalian ion channels via residue-specific interactions. These insights may accelerate development of anti-infective or therapeutic peptides that selectively target microbial or abnormal host cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736466PMC
http://dx.doi.org/10.1073/pnas.0904465106DOI Listing

Publication Analysis

Top Keywords

ion channels
8
crotamine
6
channels
6
antimicrobial
5
hbd-2
5
selective reciprocity
4
reciprocity antimicrobial
4
antimicrobial activity
4
activity versus
4
versus cytotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!